IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v26y2014i1p171-185.html
   My bibliography  Save this article

Estimation and variable selection for generalised partially linear single-index models

Author

Listed:
  • Peng Lai
  • Ye Tian
  • Heng Lian

Abstract

In this paper, we study the problem of estimation and variable selection for generalised partially linear single-index models based on quasi-likelihood, extending existing studies on variable selection for partially linear single-index models to binary and count responses. To take into account the unit norm constraint of the index parameter, we use the 'delete-one-component' approach. The asymptotic normality of the estimates is demonstrated. Furthermore, the smoothly clipped absolute deviation penalty is added for variable selection of parameters both in the nonparametric part and the parametric part, and the oracle property of the variable selection procedure is shown. Finally, some simulation studies are carried out to illustrate the finite sample performance.

Suggested Citation

  • Peng Lai & Ye Tian & Heng Lian, 2014. "Estimation and variable selection for generalised partially linear single-index models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(1), pages 171-185, March.
  • Handle: RePEc:taf:gnstxx:v:26:y:2014:i:1:p:171-185
    DOI: 10.1080/10485252.2013.841156
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485252.2013.841156
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485252.2013.841156?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohamed Alahiane & Idir Ouassou & Mustapha Rachdi & Philippe Vieu, 2022. "High-Dimensional Statistics: Non-Parametric Generalized Functional Partially Linear Single-Index Model," Mathematics, MDPI, vol. 10(15), pages 1-21, July.
    2. Mustapha Rachdi & Mohamed Alahiane & Idir Ouassou & Abdelaziz Alahiane & Lahoucine Hobbad, 2024. "Cross-Validated Functional Generalized Partially Linear Single-Functional Index Model," Mathematics, MDPI, vol. 12(17), pages 1-22, August.
    3. Mohamed Alahiane & Idir Ouassou & Mustapha Rachdi & Philippe Vieu, 2021. "Partially Linear Generalized Single Index Models for Functional Data (PLGSIMF)," Stats, MDPI, vol. 4(4), pages 1-21, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:26:y:2014:i:1:p:171-185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.