Author
Listed:
- Min Hee Kim
- Michael Akritas
Abstract
The classical Pearson's chi-square test for goodness-of-fit has found extensive applications in areas such as contingency tables and, recently, multiple testing. Mann and Wald [(1942), ‘On the Choice of the Number of Class Intervals in the Application of the Chi Square Test’, The Annals of Mathematical Statistics, 13, 306–317] were the first to establish the power advantages of letting the number nbin of bins tend to infinity with n, and found nbin=n2/5 to be the optimal rate. For a corresponding development in the area of contingency tables, see Holst [(1972), ‘Asymptotic Normality and Efficiency for Certain Goodness-of-Fit Tests’, Biometrika, 59, 137–145], Morris [(1975), ‘Central Limit Theorems for Multinomial Sums’, The Annals of Statistics, 3, 165–188], and Koehler and Larntz [(1980), ‘An Empirical Investigation of Goodness-of-Fit Statistics for Sparse Multinomials’, Journal of the American Statistical Association, 75, 336–344]. In this paper, we consider the use of thresholding methods to further improve on the power of Pearson's chi-square test. An alternative statistic, based on the cell averages, is also studied. The Fourier or wavelet transformation is used to ensure power enhancement in both high- and low-signal-to-noise ratio alternatives. Simulations suggest that application of order thresholding (Kim, M.H., and Akritas, M.G. (2010), ‘Order Thresholding’, The Annals of Statistics, 38, 2314–2350) achieves accurate type I error rates, and competitive power.
Suggested Citation
Min Hee Kim & Michael Akritas, 2012.
"Goodness-of-fit testing: the thresholding approach,"
Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(1), pages 119-138.
Handle:
RePEc:taf:gnstxx:v:24:y:2012:i:1:p:119-138
DOI: 10.1080/10485252.2011.606367
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:24:y:2012:i:1:p:119-138. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.