IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v23y2011i2p581-581.html
   My bibliography  Save this article

Student Prize Award

Author

Listed:
  • The Editors

Abstract

P-splines regression is a flexible smoothing tool in which the starting point is a highly parameterised model and overfitting is prevented by introducing a penalty function. A common form of the penalty term is obtained by taking a prespecified order of differences of adjacent coefficients. This paper deals with a data-driven choice of the differencing order, as such allowing for the fit to adapt automatically to the (unknown) degree of smoothness of the underlying function. The selection procedure is based on Akaike's information criterion. The study is carried out in a broad framework of generalised linear and generalised additive models. We provide the necessary theoretical support for the selection procedure, and investigate its performance via simulations. We illustrate the use of such a selection procedure on some real data examples. The discussed examples include generalised normal, binomial and Poisson regression models.

Suggested Citation

  • The Editors, 2011. "Student Prize Award," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(2), pages 581-581.
  • Handle: RePEc:taf:gnstxx:v:23:y:2011:i:2:p:581-581
    DOI: 10.1080/10485252.2011.573627
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485252.2011.573627
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485252.2011.573627?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:23:y:2011:i:2:p:581-581. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.