IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v23y2011i1p21-36.html
   My bibliography  Save this article

A Gaussian process regression approach to a single-index model

Author

Listed:
  • Taeryon Choi
  • Jian Shi
  • Bo Wang

Abstract

We consider a Gaussian process regression (GPR) approach to analysing a single-index model (SIM) from the Bayesian perspective. Specifically, the unknown link function is assumed to be a Gaussian process a priori and a prior on the index vector is considered based on a simple uniform distribution on the unit sphere. The posterior distributions for the unknown parameters are derived, and the posterior inference of the proposed approach is performed via Markov chain Monte Carlo methods based on them. Particularly, in estimating the hyperparameters, different numerical schemes are implemented: fully Bayesian methods and empirical Bayes methods. Numerical illustration of the proposed approach is also made using simulation data as well as well-known real data. The proposed approach broadens the scope of the applicability of the SIM as well as the GPR. In addition, we discuss the theoretical aspect of the proposed method in terms of posterior consistency.

Suggested Citation

  • Taeryon Choi & Jian Shi & Bo Wang, 2011. "A Gaussian process regression approach to a single-index model," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(1), pages 21-36.
  • Handle: RePEc:taf:gnstxx:v:23:y:2011:i:1:p:21-36
    DOI: 10.1080/10485251003768019
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485251003768019
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485251003768019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Glen McGee & Ander Wilson & Thomas F. Webster & Brent A. Coull, 2023. "Bayesian multiple index models for environmental mixtures," Biometrics, The International Biometric Society, vol. 79(1), pages 462-474, March.
    2. Hyung G. Park & Danni Wu & Eva Petkova & Thaddeus Tarpey & R. Todd Ogden, 2023. "Bayesian Index Models for Heterogeneous Treatment Effects on a Binary Outcome," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(2), pages 397-418, July.
    3. Wai-Yin Poon & Hai-Bin Wang, 2014. "Multivariate partially linear single-index models: Bayesian analysis," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(4), pages 755-768, December.
    4. Taha Alshaybawee & Habshah Midi & Rahim Alhamzawi, 2017. "Bayesian elastic net single index quantile regression," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(5), pages 853-871, April.
    5. Levi, Evgeny & Craiu, Radu V., 2018. "Bayesian inference for conditional copulas using Gaussian Process single index models," Computational Statistics & Data Analysis, Elsevier, vol. 122(C), pages 115-134.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:23:y:2011:i:1:p:21-36. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.