IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v21y2009i7p839-850.html
   My bibliography  Save this article

Sharp adaptive estimation by a blockwise method

Author

Listed:
  • T. Tony Cai
  • Mark Low
  • Linda Zhao

Abstract

We consider a blockwise James–Stein estimator for nonparametric function estimation in suitable wavelet or Fourier bases. The estimator can be readily explained and implemented. We show that the estimator is asymptotically sharp adaptive in minimax risk over any Sobolev ball containing the true function. Further, for a moderately broad range of bounded sets in the Besov space our estimator is asymptotically nearly sharp adaptive in the sense that it comes within the Donoho–Liu constant, 1.24, of being exactly sharp adaptive. Other parameter spaces are also considered. The paper concludes with a Monte-Carlo study comparing the performance of our estimator with that of three other popular wavelet estimators. Our procedure generally (but not always) outperforms two of these and is overall comparable, or perhaps slightly superior, with the third.

Suggested Citation

  • T. Tony Cai & Mark Low & Linda Zhao, 2009. "Sharp adaptive estimation by a blockwise method," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(7), pages 839-850.
  • Handle: RePEc:taf:gnstxx:v:21:y:2009:i:7:p:839-850
    DOI: 10.1080/10485250903026320
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485250903026320
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485250903026320?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Goldenshluger, Alexander & Tsybakov, Alexandre, 2003. "Optimal prediction for linear regression with infinitely many parameters," Journal of Multivariate Analysis, Elsevier, vol. 84(1), pages 40-60, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Wenhua & Zhang, Cun-Hui, 2013. "A nonparametric empirical Bayes approach to adaptive minimax estimation," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 82-95.
    2. Tuvaandorj, Purevdorj, 2020. "Regression discontinuity designs, white noise models, and minimax," Journal of Econometrics, Elsevier, vol. 218(2), pages 587-608.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Comte , Fabienne & Johannes, Jan, 2011. "Adaptive functional linear regression," LIDAM Discussion Papers ISBA 2011038, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:21:y:2009:i:7:p:839-850. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.