IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v21y2009i6p697-711.html
   My bibliography  Save this article

Nonparametric regression with weakly dependent data: the discrete and continuous regressor case

Author

Listed:
  • Cong Li
  • Desheng Ouyang
  • Jeffrey Racine

Abstract

Data-driven methods of bandwidth selection are necessary for the sound application of kernel methods, with benefits including but not limited to automatic dimensionality reduction in the presence of irrelevant regressors [P. Hall, Q. Li, and J.S. Racine, ‘Nonparametric estimation of regression functions in the presence of irrelevant regressors, Rev. Econ. Statist. 89 (2007), pp. 784–789] and the ability to handle the mix of discrete and continuous data often encountered in applied settings without resorting to sample splitting [J.S. Racine and Q. Li, Nonparametric estimation of regression functions with both categorical and continuous data, J. Econometrics 119(1) (2004), pp. 99–130]. Many existing results have been developed under the presumption of independence, which may not hold when one deals with time-series data. This paper develops the properties of data-driven kernel regression for weakly dependent mixed discrete and continuous data. Monte Carlo simulations are undertaken to examine the finite-sample properties of the estimator, and an illustrative application is presented.

Suggested Citation

  • Cong Li & Desheng Ouyang & Jeffrey Racine, 2009. "Nonparametric regression with weakly dependent data: the discrete and continuous regressor case," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(6), pages 697-711.
  • Handle: RePEc:taf:gnstxx:v:21:y:2009:i:6:p:697-711
    DOI: 10.1080/10485250902928435
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485250902928435
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485250902928435?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Persson, Emma & Häggström, Jenny & Waernbaum, Ingeborg & de Luna, Xavier, 2017. "Data-driven algorithms for dimension reduction in causal inference," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 280-292.
    2. Battisti, Michele & Gatto, Massimo Del & Parmeter, Christopher F., 2022. "Skill-biased technical change and labor market inefficiency," Journal of Economic Dynamics and Control, Elsevier, vol. 139(C).
    3. Michele Battisti & Massimo Del Gatto & Christopher F. Parmeter, 2018. "Labor productivity growth: disentangling technology and capital accumulation," Journal of Economic Growth, Springer, vol. 23(1), pages 111-143, March.
    4. repec:wyi:journl:002112 is not listed on IDEAS
    5. Xibin Zhang & Maxwell L. King & Han Lin Shang, 2016. "Bayesian Bandwidth Selection for a Nonparametric Regression Model with Mixed Types of Regressors," Econometrics, MDPI, vol. 4(2), pages 1-27, April.
    6. Zheng Li & Roderick M. Rejesus & Xiaoyong Zheng, 2021. "Nonparametric Estimation and Inference of Production Risk," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(5), pages 1857-1877, October.
    7. Zongwu Cai & Qi Li, 2013. "Some Recent Develop- ments on Nonparametric Econometrics," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    8. Wang, Banban & Wei, Jie & Tan, Xiujie & Su, Bin, 2021. "The sectorally heterogeneous and time-varying price elasticities of energy demand in China," Energy Economics, Elsevier, vol. 102(C).
    9. Qi Gao & Long Liu & Jeffrey S. Racine, 2015. "A Partially Linear Kernel Estimator for Categorical Data," Econometric Reviews, Taylor & Francis Journals, vol. 34(6-10), pages 959-978, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:21:y:2009:i:6:p:697-711. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.