IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v21y2009i4p441-452.html
   My bibliography  Save this article

Specification tests for the distribution of errors in nonparametric regression: a martingale approach

Author

Listed:
  • Juan Mora
  • Alicia Pérez-Alonso

Abstract

We discuss how to test whether the distribution of regression errors belongs to a parametric family of continuous distribution functions, making no parametric assumption about the conditional mean or the conditional variance in the regression model. We propose using test statistics that are based on a martingale transform of the estimated empirical process. We prove that these statistics are asymptotically distribution-free, and two Monte Carlo experiments show that they work reasonably well in practice.

Suggested Citation

  • Juan Mora & Alicia Pérez-Alonso, 2009. "Specification tests for the distribution of errors in nonparametric regression: a martingale approach," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(4), pages 441-452.
  • Handle: RePEc:taf:gnstxx:v:21:y:2009:i:4:p:441-452
    DOI: 10.1080/10485250802666192
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485250802666192
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485250802666192?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kloek, Teun & van Dijk, Herman K., 1978. "Efficient estimation of income distribution parameters," Journal of Econometrics, Elsevier, vol. 8(1), pages 61-74, August.
    2. Mora, Juan & Neumeyer, Natalie, 2005. "The Two-Sample Problem with Regression Errors : An Empirical Process Approach," Technical Reports 2005,05, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    3. Koul, Hira L. & Sakhanenko, Lyudmila, 2005. "Goodness-of-fit testing in regression: A finite sample comparison of bootstrap methodology and Khmaladze transformation," Statistics & Probability Letters, Elsevier, vol. 74(3), pages 290-302, October.
    4. Michael G. Akritas & Ingrid Van Keilegom, 2001. "Non‐parametric Estimation of the Residual Distribution," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 28(3), pages 549-567, September.
    5. McDonald, James B. & Butler, Richard J., 1990. "Regression models for positive random variables," Journal of Econometrics, Elsevier, vol. 43(1-2), pages 227-251.
    6. Hansen, Bruce E., 2008. "Uniform Convergence Rates For Kernel Estimation With Dependent Data," Econometric Theory, Cambridge University Press, vol. 24(3), pages 726-748, June.
    7. Jushan Bai, 2003. "Testing Parametric Conditional Distributions of Dynamic Models," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 531-549, August.
    8. Müller Ursula U. & Schick Anton & Wefelmeyer Wolfgang, 2007. "Estimating the error distribution function in semiparametric regression," Statistics & Risk Modeling, De Gruyter, vol. 25(1), pages 1-18, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenceslao González-Manteiga & Rosa Crujeiras, 2013. "An updated review of Goodness-of-Fit tests for regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 361-411, September.
    2. Heuchenne, Cédric & Van Keilegom, Ingrid, 2010. "Goodness-of-fit tests for the error distribution in nonparametric regression," Computational Statistics & Data Analysis, Elsevier, vol. 54(8), pages 1942-1951, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vladimir Hlasny, 2021. "Parametric representation of the top of income distributions: Options, historical evidence, and model selection," Journal of Economic Surveys, Wiley Blackwell, vol. 35(4), pages 1217-1256, September.
    2. Holger Dette & Juan Carlos Pardo‐Fernández & Ingrid Van Keilegom, 2009. "Goodness‐of‐Fit Tests for Multiplicative Models with Dependent Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(4), pages 782-799, December.
    3. Natalie Neumeyer, 2009. "Smooth Residual Bootstrap for Empirical Processes of Non‐parametric Regression Residuals," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(2), pages 204-228, June.
    4. Florens, Jean-Pierre & Simar, Léopold & Van Keilegom, Ingrid, 2014. "Frontier estimation in nonparametric location-scale models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 456-470.
    5. Neumeyer, Natalie & Van Keilegom, Ingrid, 2010. "Estimating the error distribution in nonparametric multiple regression with applications to model testing," Journal of Multivariate Analysis, Elsevier, vol. 101(5), pages 1067-1078, May.
    6. Pardo-Fernández, Juan Carlos, 2007. "Comparison of error distributions in nonparametric regression," Statistics & Probability Letters, Elsevier, vol. 77(3), pages 350-356, February.
    7. Thomas Parker, 2010. "A comparison of alternative approaches to sup-norm goodness of fit tests with estimated parameters," CeMMAP working papers CWP34/10, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    8. Györfi, László & Walk, Harro, 2012. "Strongly consistent density estimation of the regression residual," Statistics & Probability Letters, Elsevier, vol. 82(11), pages 1923-1929.
    9. Escanciano, Juan Carlos & Jacho-Chávez, David T. & Lewbel, Arthur, 2014. "Uniform convergence of weighted sums of non and semiparametric residuals for estimation and testing," Journal of Econometrics, Elsevier, vol. 178(P3), pages 426-443.
    10. Neumeyer, Natalie, 2009. "Testing independence in nonparametric regression," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1551-1566, August.
    11. Demetrescu, Matei & Kruse, Robinson, 2015. "Testing heteroskedastic time series for normality," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 113221, Verein für Socialpolitik / German Economic Association.
    12. Mora, Juan & Neumeyer, Natalie, 2005. "The Two-Sample Problem with Regression Errors : An Empirical Process Approach," Technical Reports 2005,05, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    13. Leonie Selk & Natalie Neumeyer, 2013. "Testing for a Change of the Innovation Distribution in Nonparametric Autoregression: The Sequential Empirical Process Approach," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(4), pages 770-788, December.
    14. Aboubacar Amiri & Baba Thiam, 2018. "Regression estimation by local polynomial fitting for multivariate data streams," Statistical Papers, Springer, vol. 59(2), pages 813-843, June.
    15. Juan Carlos Escanciano & Zaichao Du, 2015. "Backtesting Expected Shortfall: Accounting for Tail Risk," CAEPR Working Papers 2015-001, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
    16. Juan Mora & Antonia Febrer, 2005. "Wage Distribution In Spain, 1994-1999: An Application Of A Flexible Estimator Of Conditional Distributions," Working Papers. Serie EC 2005-04, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    17. Nishiyama, Yoshihiko & Hitomi, Kohtaro & Kawasaki, Yoshinori & Jeong, Kiho, 2011. "A consistent nonparametric test for nonlinear causality—Specification in time series regression," Journal of Econometrics, Elsevier, vol. 165(1), pages 112-127.
    18. Bonsoo Koo & Oliver Linton, 2010. "Semiparametric Estimation of Locally Stationary Diffusion Models," STICERD - Econometrics Paper Series 551, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    19. Corradi, Valentina & Swanson, Norman R., 2004. "A test for the distributional comparison of simulated and historical data," Economics Letters, Elsevier, vol. 85(2), pages 185-193, November.
    20. Jesus Gonzalo & Jose Olmo, 2014. "Conditional Stochastic Dominance Tests In Dynamic Settings," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 55(3), pages 819-838, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:21:y:2009:i:4:p:441-452. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.