IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v20y2008i7p599-609.html
   My bibliography  Save this article

A geometric interpretation of the multiresolution criterion in nonparametric regression

Author

Listed:
  • Thoralf Mildenberger

Abstract

A recent approach to choosing the amount of smoothing in nonparametric regression is to select the simplest estimate for which the residuals ‘look like white noise’. This can be checked with the so-called multiresolution criterion, which Davies and Kovac [P.L. Davies and A. Kovac, Local extremes, runs, strings and multiresolutions (with discussion and rejoinder), Ann. Stat. 29 (2001), pp. 1–65.] introduced in connection with their taut-string procedure. It has also been used in several other nonparametric procedures such as spline smoothing or piecewise constant regression. We show that this criterion is related to a norm, the multiresolution norm (MR-norm). We point out some important differences between this norm and p-norms. The MR-norm is not invariant w.r.t. sign changes and permutations, and this makes it useful for detecting runs of residuals of the same sign. We also give sharp upper and lower bounds for the MR-norm in terms of p-norms.

Suggested Citation

  • Thoralf Mildenberger, 2008. "A geometric interpretation of the multiresolution criterion in nonparametric regression," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 20(7), pages 599-609.
  • Handle: RePEc:taf:gnstxx:v:20:y:2008:i:7:p:599-609
    DOI: 10.1080/10485250802360994
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485250802360994
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485250802360994?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P.L. Davies & M. Meise, 2008. "Approximating data with weighted smoothing splines," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 20(3), pages 207-228.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hotz, Thomas & Marnitz, Philipp & Stichtenoth, Rahel & Davies, Laurie & Kabluchko, Zakhar & Munk, Axel, 2012. "Locally adaptive image denoising by a statistical multiresolution criterion," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 543-558.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:20:y:2008:i:7:p:599-609. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.