IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v20y2008i7p573-598.html
   My bibliography  Save this article

Robust nonparametric estimation for functional data

Author

Listed:
  • C. Crambes
  • L. Delsol
  • A. Laksaci

Abstract

Robust estimation provides an alternative approach to classical methods, for instance, when the data are affected by the presence of outliers. Recently, these robust estimators have been considered for models with functional data. In this paper, we focus on asymptotic properties of a conditional nonparametric estimation of a real-valued variable with a functional covariate. We present results dealing with 𝕃q errors of these estimators. Then, our estimation procedure is evaluated by means of some applications to real data sets.

Suggested Citation

  • C. Crambes & L. Delsol & A. Laksaci, 2008. "Robust nonparametric estimation for functional data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 20(7), pages 573-598.
  • Handle: RePEc:taf:gnstxx:v:20:y:2008:i:7:p:573-598
    DOI: 10.1080/10485250802331524
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485250802331524
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485250802331524?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saliha Derrar & Ali Laksaci & Elias Ould Saïd, 2020. "M-estimation of the regression function under random left truncation and functional time series model," Statistical Papers, Springer, vol. 61(3), pages 1181-1202, June.
    2. Boente, Graciela & Vahnovan, Alejandra, 2015. "Strong convergence of robust equivariant nonparametric functional regression estimators," Statistics & Probability Letters, Elsevier, vol. 100(C), pages 1-11.
    3. Wang, Guochang & Lin, Nan & Zhang, Baoxue, 2012. "Functional linear regression after spline transformation," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 587-601.
    4. Maronna, Ricardo A. & Yohai, Victor J., 2013. "Robust functional linear regression based on splines," Computational Statistics & Data Analysis, Elsevier, vol. 65(C), pages 46-55.
    5. Mohammedi, Mustapha & Bouzebda, Salim & Laksaci, Ali, 2021. "The consistency and asymptotic normality of the kernel type expectile regression estimator for functional data," Journal of Multivariate Analysis, Elsevier, vol. 181(C).
    6. Crambes, Christophe & Gannoun, Ali & Henchiri, Yousri, 2013. "Support vector machine quantile regression approach for functional data: Simulation and application studies," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 50-68.
    7. Joseph Ngatchou-Wandji & Marwa Ltaifa & Didier Alain Njamen Njomen & Jia Shen, 2022. "Nonparametric Estimation of the Density Function of the Distribution of the Noise in CHARN Models," Mathematics, MDPI, vol. 10(4), pages 1-20, February.
    8. Gheriballah, Abdelkader & Laksaci, Ali & Sekkal, Soumeya, 2013. "Nonparametric M-regression for functional ergodic data," Statistics & Probability Letters, Elsevier, vol. 83(3), pages 902-908.
    9. Demongeot, Jacques & Hamie, Ali & Laksaci, Ali & Rachdi, Mustapha, 2016. "Relative-error prediction in nonparametric functional statistics: Theory and practice," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 261-268.
    10. Bouzebda, Salim & Chaouch, Mohamed, 2022. "Uniform limit theorems for a class of conditional Z-estimators when covariates are functions," Journal of Multivariate Analysis, Elsevier, vol. 189(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:20:y:2008:i:7:p:573-598. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.