Author
Abstract
We introduce a model based on Ordinary Differential Equations to describe how two mutually exclusive groups progress through a career hierarchy, whether in a single organization, or in an entire economic sector. The intended application is to gender imbalance at the top of the academic hierarchy in European Universities; however, the model is entirely generic and may be applied in other contexts also. Previous research on gender imbalance in European universities has focused on large-scale statistical studies. Our model represents a point of departure, as it is deterministic (i.e., based on Ordinary Differential Equations). The model requires a precise definition of the progression rates for the different groups through the hierarchy; these are key parameters governing the dynamics of career progression. The progression rate for each group can be decomposed into a product: the proportion of group members at a low level in the hierarchy who compete for promotion to the next level a given year, multiplied by the in-competition success rate for the group in question. Either of these two parameters can differ across the groups under consideration; this introduces a group asymmetry into the organization’s composition. We introduce a glass-ceiling index to summarize this asymmetry succinctly. Using case studies from the literature, we demonstrate how the mathematical framework can pinpoint the proximate cause of the glass ceiling in European academia.
Suggested Citation
Lennon Ó Náraigh, 2020.
"A differential-equation-based model of the glass ceiling in career progression,"
The Journal of Mathematical Sociology, Taylor & Francis Journals, vol. 44(1), pages 42-64, January.
Handle:
RePEc:taf:gmasxx:v:44:y:2020:i:1:p:42-64
DOI: 10.1080/0022250X.2019.1611576
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gmasxx:v:44:y:2020:i:1:p:42-64. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/gmas .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.