Author
Listed:
- Cornelius Fritz
- Marius Mehrl
- Paul W. Thurner
- Göran Kauermann
Abstract
Accurate and interpretable forecasting models predicting spatially and temporally fine-grained changes in the numbers of intrastate conflict casualties are of crucial importance for policymakers and international non-governmental organizations (NGOs). Using a count data approach, we propose a hierarchical hurdle regression model to address the corresponding prediction challenge at the monthly PRIO-grid level. More precisely, we model the intensity of local armed conflict at a specific point in time as a three-stage process. Stages one and two of our approach estimate whether we will observe any casualties at the country- and grid-cell-level, respectively, while stage three applies a regression model for truncated data to predict the number of such fatalities conditional upon the previous two stages. Within this modeling framework, we focus on the role of governmental arms imports as a processual factor allowing governments to intensify or deter from fighting. We further argue that a grid cell’s geographic remoteness is bound to moderate the effects of these military buildups. Out-of-sample predictions corroborate the effectiveness of our parsimonious and theory-driven model, which enables full transparency combined with accuracy in the forecasting process.Los modelos de previsión precisos e interpretables que predicen los cambios a nivel espacial y temporal en la cantidad de víctimas de los conflictos intraestatales son de vital importancia para los responsables políticos y las organizaciones no gubernamentales (ONG) internacionales. Utilizando un enfoque de datos de recuento, proponemos un modelo de regresión Hurdle jerárquico para abordar el correspondiente reto de predicción a nivel mensual de PRIO-GRID. Más concretamente, modelamos la intensidad del conflicto armado local en un momento determinado como un proceso de tres etapas. Las etapas uno y dos de nuestro enfoque estiman si observaremos alguna víctima a nivel de país y de celda de la red, respectivamente, mientras que la etapa tres aplica un modelo de regresión para datos truncados con el propósito de predecir la cantidad potencial de dichas víctimas mortales en función de las dos etapas anteriores. Dentro de este marco de modelización, nos centramos en el rol de las importaciones de armas por parte de los gobiernos como un factor de proceso que permite a los gobiernos intensificar o impedir los enfrentamientos. Además, sostenemos que la lejanía geográfica de una célula de la red está destinada a moderar los efectos de estas concentraciones militares. Las predicciones fuera de la muestra corroboran la eficacia de nuestro modelo parsimonioso y basado en la teoría, que permite una transparencia total combinada con precisión en el proceso de previsión.Les modèles de prévision précis et interprétables, qui permettent de prédire spatialement et temporellement les détails des changements dans les nombres de victimes de conflits intra-étatiques, sont d’une importance cruciale pour les décideurs politiques et les organizations non gouvernementales (ONG) internationales. Nous adoptons une approche par données de comptage et nous proposons un modèle de régression hiérarchique à obstacle (hurdle) pour relever le défi de la prédiction correspondante au niveau de la grille mensuelle du PRIO (Peace research institute Oslo, Institut de recherche sur la paix d’Oslo). Plus précisément, nous modélisons l’intensité des conflits armés locaux à un moment spécifique sous la forme d’un processus en trois étapes. Les étapes un et deux de notre approche consistent à estimer si nous observerons des pertes respectivement au niveau du pays et de la cellule de grille, tandis que l’étape trois consiste à appliquer un modèle de régression pour les données tronquées afin de prédire le nombre de ces pertes en fonction des deux étapes précédentes. Dans ce cadre de modélisation, nous nous concentrons sur le rôle des importations d’armes gouvernementales en tant que facteur processuel permettant aux gouvernements d’intensifier ou de dissuader les combats. Nous soutenons également que l’isolement géographique d’une cellule de la grille est susceptible de modérer les effets de ces renforcements militaires. Des prédictions hors échantillon corroborent l’efficacité de notre modèle parcimonieux fondé sur la théorie qui permet une totale transparence associée à une précision du processus de prévision.
Suggested Citation
Cornelius Fritz & Marius Mehrl & Paul W. Thurner & Göran Kauermann, 2022.
"The role of governmental weapons procurements in forecasting monthly fatalities in intrastate conflicts: A semiparametric hierarchical hurdle model,"
International Interactions, Taylor & Francis Journals, vol. 48(4), pages 778-799, July.
Handle:
RePEc:taf:ginixx:v:48:y:2022:i:4:p:778-799
DOI: 10.1080/03050629.2022.1993210
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the
CitEc Project, subscribe to its
RSS feed for this item.
Cited by:
- Racek, Daniel & Thurner, Paul & Kauermann, Goeran, 2024.
"Integrating Spatio-temporal Diffusion into Statistical Forecasting Models of Armed Conflict via Non-parametric Smoothing,"
OSF Preprints
q59dr, Center for Open Science.
- Racek, Daniel & Thurner, Paul W. & Davidson, Brittany I. & Zhu, Xiao Xiang & Kauermann, Göran, 2024.
"Conflict forecasting using remote sensing data: An application to the Syrian civil war,"
International Journal of Forecasting, Elsevier, vol. 40(1), pages 373-391.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:ginixx:v:48:y:2022:i:4:p:778-799. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GINI20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.