IDEAS home Printed from https://ideas.repec.org/a/taf/ginixx/v48y2022i4p759-777.html
   My bibliography  Save this article

Predicting political violence using a state-space model

Author

Listed:
  • Andreas Lindholm
  • Johannes Hendriks
  • Adrian Wills
  • Thomas B. Schön

Abstract

We provide a proof-of-concept for a novel state-space modelling approach for predicting monthly deaths due to political violence. Attention is focused on developing the method and demonstrating the utility of this approach, which provides exciting opportunities to engage with domain experts in developing new and improved state-space models for predicting violence. The prediction is made on a grid of cells with spatial resolution of 0.5 × 0.5 degrees, and each cell is modeled to have two mathematically well-defined unobserved/latent/hidden states that evolves over time and encode the “onset risk” and “potential severity”, respectively. This offers a certain level of interpretability of the model. By using the model for computing the probability distribution for a death count at a future time conditioned on all data observed up until the current time, a predictive distribution is obtained. The predictive distribution typically places a certain mass at the death count 0 (no violent outbreak) and the remaining mass indicating a likely interval of the fatality count, should a violent outbreak appear. To evaluate the model performance we—lacking a better alternative—report the mean of the predictive distribution, but the access to the predictive distribution is in itself an interesting contribution to the application. This work merely serves as a proof-of-concept for the state-space modeling approach for this type of data and several possible directions for further work that could improve the predictive performance are suggested.

Suggested Citation

  • Andreas Lindholm & Johannes Hendriks & Adrian Wills & Thomas B. Schön, 2022. "Predicting political violence using a state-space model," International Interactions, Taylor & Francis Journals, vol. 48(4), pages 759-777, July.
  • Handle: RePEc:taf:ginixx:v:48:y:2022:i:4:p:759-777
    DOI: 10.1080/03050629.2022.2094921
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03050629.2022.2094921
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03050629.2022.2094921?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Racek, Daniel & Thurner, Paul & Kauermann, Goeran, 2024. "Integrating Spatio-temporal Diffusion into Statistical Forecasting Models of Armed Conflict via Non-parametric Smoothing," OSF Preprints q59dr, Center for Open Science.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:ginixx:v:48:y:2022:i:4:p:759-777. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GINI20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.