Author
Listed:
- Konstantin Bätz
- Ann-Cathrin Klöckner
- Gerald Schneider
Abstract
This article addresses the discrepancy between the explanation and the prediction of political violence through the development of different models that approximate the decision-making on war and peace. Borrowing from the crisis bargaining literature, the prediction models particularly consider the situational attributes through which players can challenge the status quo. We distinguish between direct and indirect proxies of a weakening of the status quo and show that adding decision-making data can improve the accuracy of cross-sectional forecasting models. The study, which demonstrates the increased conflict risk due to the COVID-19 pandemic and thus another development upsetting the status quo, discusses the usefulness of decision-making forecasts through various case study illustrations.Este artículo aborda la discrepancia entre la explicación y la predicción de la violencia política mediante la elaboración de diversos modelos que se acercan a la toma de decisiones sobre la guerra y la paz. Inspirados en las publicaciones sobre negociaciones de crisis, los modelos de predicción consideran, en particular, las características situacionales a través de las cuales las piezas claves pueden desafiar el statu quo. Distinguimos entre indicadores directos e indirectos de un debilitamiento del statu quo y demostramos que la incorporación de datos sobre la toma de decisiones puede mejorar la precisión de los modelos de previsión transversal. El estudio, que demuestra el aumento del riesgo de conflicto durante la pandemia de la COVID-19 y, por lo tanto, otro acontecimiento que altera el statu quo, analiza la utilidad de las previsiones para la toma de decisiones mediante diferentes ejemplos de casos prácticos.Cet article aborde la divergence entre l’explication et la prédiction de la violence politique par le développement de différents modèles qui permettent une estimation des prises de décisions sur la guerre et la paix. S’inspirant de la littérature sur les négociations de crises les modèles de prédiction prennent en particulier en compte les attributs situationnels par lesquels les acteurs peuvent remettre en question le statu quo. Nous distinguons les variables directes des variables indirectes de l’affaiblissement du statu quo et montrons que l’ajout de données sur les prises de décisions peut améliorer la précision des modèles de prévision transversaux. L’étude, qui démontre l’augmentation du risque de conflit par la pandémie de COVID et donc une autre évolution bouleversant le statu quo, discute de l’utilité des prévisions de prises de décisions à travers diverses illustrations par des études de cas.
Suggested Citation
Konstantin Bätz & Ann-Cathrin Klöckner & Gerald Schneider, 2022.
"Challenging the status quo: Predicting violence with sparse decision-making data,"
International Interactions, Taylor & Francis Journals, vol. 48(4), pages 697-713, July.
Handle:
RePEc:taf:ginixx:v:48:y:2022:i:4:p:697-713
DOI: 10.1080/03050629.2022.2051024
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:ginixx:v:48:y:2022:i:4:p:697-713. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GINI20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.