IDEAS home Printed from https://ideas.repec.org/a/taf/gcmbxx/v27y2024i8p964-979.html
   My bibliography  Save this article

Estimation of non-alcoholic steatohepatitis (NASH) disease using clinical information based on the optimal combination of intelligent algorithms for feature selection and classification

Author

Listed:
  • Hamed Zamanian
  • Ahmad Shalbaf

Abstract

The early diagnosis of NASH disease can decrease the risk of proceeding elements and treatment costs for patients. This study aims to present an optimal combination of intelligent algorithms using advanced machine learning methods, including different feature selections and classifications based on clinical data and blood factors. In this work, collected data were from 176 patients to investigate NASH disease, and 19 features were extracted. We then sought to find the best combination of features based on different feature selection algorithms such as Feature Forward Selection (FFS), Minimum Redundancy Maximum Relevance (MRMR), and Mutual Information (MI). Finally, we used nine classifier frameworks with different mathematical mechanisms, including random forest (RF), logistic regression (LR), Linear Discriminant Analysis (LDA), AdaBoost, K nearest neighbors (KNN), multilayer perceptron model (MLP), support vector machine (SVM), and decision tree (DT) to estimate NASH disease. Our investigation revealed that the combination of dominant features, namely body mass index (BMI), glutamic pyruvic transaminase (GPT), total cholesterol (TC), high-density lipoprotein (HDL), Ezetimibe, lipoprotein level Lp(a), Loge(Lp(a)), total triglyceride (TG), Creatinine (Cre), HbA1c, Fibrate, and Sex, selected by the MRMR algorithm and classified by the RF method can provide the most appropriate performance based on less computation effort and maximum performance with accuracy, AUC, precision, and recall indices, which are 81.51±9.35, 82.53±11.24, 85.28±9.68, and 89.49±7.92, respectively. This study investigated the configuration of feature selection and classifier that is most suitable for classifying NASH disease based on clinical data and blood factors. The proposed intelligent algorithm based on MRMR and RF classifier can automatically diagnose NASH disease with appropriate performance and present an initial report without any further invasive methods. It also clarifies the diagnostic process and, as a result, the continuation of their prevention and treatment cycle.

Suggested Citation

  • Hamed Zamanian & Ahmad Shalbaf, 2024. "Estimation of non-alcoholic steatohepatitis (NASH) disease using clinical information based on the optimal combination of intelligent algorithms for feature selection and classification," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 27(8), pages 964-979, June.
  • Handle: RePEc:taf:gcmbxx:v:27:y:2024:i:8:p:964-979
    DOI: 10.1080/10255842.2023.2217978
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10255842.2023.2217978
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10255842.2023.2217978?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gcmbxx:v:27:y:2024:i:8:p:964-979. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/gcmb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.