IDEAS home Printed from https://ideas.repec.org/a/taf/gcmbxx/v18y2015i14p1555-1563.html
   My bibliography  Save this article

Sensitivity of a subject-specific musculoskeletal model to the uncertainties on the joint axes location

Author

Listed:
  • Saulo Martelli
  • Giordano Valente
  • Marco Viceconti
  • Fulvia Taddei

Abstract

Subject-specific musculoskeletal models have become key tools in the clinical decision-making process. However, the sensitivity of the calculated solution to the unavoidable errors committed while deriving the model parameters from the available information is not fully understood. The aim of this study was to calculate the sensitivity of all the kinematics and kinetics variables to the inter-examiner uncertainty in the identification of the lower limb joint models. The study was based on the computer tomography of the entire lower-limb from a single donor and the motion capture from a body-matched volunteer. The hip, the knee and the ankle joint models were defined following the International Society of Biomechanics recommendations. Using a software interface, five expert anatomists identified on the donor's images the necessary bony locations five times with a three-day time interval. A detailed subject-specific musculoskeletal model was taken from an earlier study, and re-formulated to define the joint axes by inputting the necessary bony locations. Gait simulations were run using OpenSim within a Monte Carlo stochastic scheme, where the locations of the bony landmarks were varied randomly according to the estimated distributions. Trends for the joint angles, moments, and the muscle and joint forces did not substantially change after parameter perturbations. The highest variations were as follows: (a) 11° calculated for the hip rotation angle, (b) 1% BW × H calculated for the knee moment and (c) 0.33 BW calculated for the ankle plantarflexor muscles and the ankle joint forces. In conclusion, the identification of the joint axes from clinical images is a robust procedure for human movement modelling and simulation.

Suggested Citation

  • Saulo Martelli & Giordano Valente & Marco Viceconti & Fulvia Taddei, 2015. "Sensitivity of a subject-specific musculoskeletal model to the uncertainties on the joint axes location," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 18(14), pages 1555-1563, October.
  • Handle: RePEc:taf:gcmbxx:v:18:y:2015:i:14:p:1555-1563
    DOI: 10.1080/10255842.2014.930134
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10255842.2014.930134
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10255842.2014.930134?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zainab Altai & Erica Montefiori & Bart van Veen & Margaret A. Paggiosi & Eugene V McCloskey & Marco Viceconti & Claudia Mazzà & Xinshan Li, 2021. "Femoral neck strain prediction during level walking using a combined musculoskeletal and finite element model approach," PLOS ONE, Public Library of Science, vol. 16(2), pages 1-19, February.
    2. Vincent Richard & Giuliano Lamberto & Tung-Wu Lu & Aurelio Cappozzo & Raphaël Dumas, 2016. "Knee Kinematics Estimation Using Multi-Body Optimisation Embedding a Knee Joint Stiffness Matrix: A Feasibility Study," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-18, June.
    3. Byong Hun Kim & Sae Yong Lee, 2021. "Validity and Reliability of a Novel Instrument for the Measurement of Subtalar Joint Axis of Rotation," IJERPH, MDPI, vol. 18(10), pages 1-10, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gcmbxx:v:18:y:2015:i:14:p:1555-1563. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/gcmb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.