IDEAS home Printed from https://ideas.repec.org/a/taf/gcmbxx/v18y2015i10p1126-1141.html
   My bibliography  Save this article

Electrocardiogram signal quality assessment using an artificially reconstructed target lead

Author

Listed:
  • H. Naseri
  • M.R. Homaeinezhad

Abstract

In real applications, even the most accurate electrocardiogram (ECG) analysis algorithm, based on research databases, might breakdown completely if a quality measurement technique is not applied precisely before the analysis. The major concentration of this study is to describe and develop a reliable ECG signal quality assessment technique. The proposed algorithm includes three major stages: preprocessing, energy-concavity index (ECI) analysis and a correlation-based examination subroutine. The preprocessing step includes the removal of baseline wanders and high-frequency disturbances. The quality measurement based on ECI includes two separate stages according to the energy and concavity of the ECG signal. The correlation-based quality measurement step is mainly established by using the correlation between ECG leads estimated by applying a suitably trained neural network. The operating characteristics of the proposed ECI are sensitivity (Se) of 77.04% with a positive predictive value (PPV) of 90.53% for detecting high-energy noise. The correlation-based technique achieved the best scores (Se = 100%; PPV = 98.92%) for detecting high-energy noise and for recognising any other kind of disturbances (Se = 92.36%; PPV = 94.77%). Although ECI analysis acts effectively against high-energy disturbances, very poor performance is obtained in cases where the energy of the disturbances is not considerable. However, the correlation-based method is able to find all kinds of disturbances. For officially evaluating the proposed algorithm, an entry was sent to the Computing-in-Cardiology Challenge 2011 on 27 February 2012; a final score (accuracy) of 93.60% was achieved.

Suggested Citation

  • H. Naseri & M.R. Homaeinezhad, 2015. "Electrocardiogram signal quality assessment using an artificially reconstructed target lead," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 18(10), pages 1126-1141, July.
  • Handle: RePEc:taf:gcmbxx:v:18:y:2015:i:10:p:1126-1141
    DOI: 10.1080/10255842.2013.875163
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10255842.2013.875163
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10255842.2013.875163?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gcmbxx:v:18:y:2015:i:10:p:1126-1141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/gcmb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.