IDEAS home Printed from https://ideas.repec.org/a/taf/gcmbxx/v17y2014i3p199-203.html
   My bibliography  Save this article

A simple approach to guide factor retention decisions when applying principal component analysis to biomechanical data

Author

Listed:
  • Steven L. Fischer
  • Robin H. Hampton
  • Wayne J. Albert

Abstract

The use of principal component analysis (PCA) as a multivariate statistical approach to reduce complex biomechanical data-sets is growing. With its increased application in biomechanics, there has been a concurrent divergence in the use of criteria to determine how much the data is reduced (i.e. how many principal factors are retained). This short communication presents power equations to support the use of a parallel analysis (PA) criterion as a quantitative and transparent method for determining how many factors to retain when conducting a PCA. Monte Carlo simulation was used to carry out PCA on random data-sets of varying dimension. This process mimicked the PA procedure that would be required to determine principal component (PC) retention for any independent study in which the data-set dimensions fell within the range tested here. A surface was plotted for each of the first eight PCs, expressing the expected outcome of a PA as a function of the dimensions of a data-set. A power relationship was used to fit the surface, facilitating the prediction of the expected outcome of a PA as a function of the dimensions of a data-set. Coefficients used to fit the surface and facilitate prediction are reported. These equations enable the PA to be freely adopted as a criterion to inform PC retention. A transparent and quantifiable criterion to determine how many PCs to retain will enhance the ability to compare and contrast between studies.

Suggested Citation

  • Steven L. Fischer & Robin H. Hampton & Wayne J. Albert, 2014. "A simple approach to guide factor retention decisions when applying principal component analysis to biomechanical data," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 17(3), pages 199-203, February.
  • Handle: RePEc:taf:gcmbxx:v:17:y:2014:i:3:p:199-203
    DOI: 10.1080/10255842.2012.673594
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10255842.2012.673594
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10255842.2012.673594?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruta Dadeliene & Stanislav Dadelo & Natalija Pozniak & Leonidas Sakalauskas, 2020. "Analysis of top kayakers’ training-intensity distribution and physiological adaptation based on structural modelling," Annals of Operations Research, Springer, vol. 289(2), pages 195-210, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gcmbxx:v:17:y:2014:i:3:p:199-203. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/gcmb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.