Author
Listed:
- Kenneth A. Mann
- Mark A. Miller
Abstract
Experimental tests and computational modelling were used to explore the fluid dynamics at the trabeculae–cement interlock regions found in the tibial component of total knee replacements. A cement–bone construct of the proximal tibia was created to simulate the immediate post-operative condition. Gap distributions along nine trabeculae–cement regions ranged from 0 to 50.4 μm (mean = 12 μm). Micro-motions ranged from 0.56 to 4.7 μm with a 1 MPa compressive load to the cement. Fluid–structure analysis between the trabeculae and the cement used idealised models with parametric evaluation of loading direction, gap closing fraction (GCF), gap thickness, loading frequency and fluid viscosity. The highest fluid shear stresses (926 Pa) along the trabecular surface were found for conditions with very thin and large GCFs, much larger than reported physiological levels (∼1–5 Pa). A second fluid–structure model was created with a provision for bone resorption using a constitutive model with resorption velocity proportional to fluid shear rate. A lower cut-off was used, below which bone resorption would not occur (50 s− 1). Results showed that there was initially high shear rates (>1000 s− 1) that diminished after initial trabecular resorption. Resorption continued in high shear rate regions, resulting in a final shape with bone left deep in the cement layer, and is consistent with morphology found in post-mortem retrievals. Small gaps between the trabecular surface and the cement in the immediate post-operative state produce fluid flow conditions that appear to be supra-physiologic; these may cause fluid-induced lysis of trabeculae in the micro-interlock regions.
Suggested Citation
Kenneth A. Mann & Mark A. Miller, 2014.
"Fluid–structure interactions in micro-interlocked regions of the cement–bone interface,"
Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 17(16), pages 1809-1820, December.
Handle:
RePEc:taf:gcmbxx:v:17:y:2014:i:16:p:1809-1820
DOI: 10.1080/10255842.2013.767336
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gcmbxx:v:17:y:2014:i:16:p:1809-1820. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/gcmb .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.