IDEAS home Printed from https://ideas.repec.org/a/taf/gcmbxx/v14y2011i07p633-643.html
   My bibliography  Save this article

Numerical modelling of nanoparticle deposition in the nasal cavity and the tracheobronchial airway

Author

Listed:
  • Kiao Inthavong
  • Kai Zhang
  • Jiyuan Tu

Abstract

Recent advances in nanotechnology have seen the manufacture of engineered nanoparticles for many commercial and medical applications such as targeted drug delivery and gene therapy. Transport of nanoparticles is mainly attributed to the Brownian force which increases as the nanoparticle decreases to 1 nm. This paper first verifies a Lagrangian Brownian model found in the commercial computational fluid dynamics software Fluent before applying the model to the nasal cavity and the tracheobronchial (TB) airway tree with a focus on drug delivery. The average radial dispersion of the nanoparticles was 9x greater for the user-defined function model over the Fluent in-built model. Deposition in the nasal cavity was high for very small nanoparticles. The particle diameter range in which the deposition drops from 80 to 18% is between 1 and 10 nm. From 10 to 150 nm, however, there is only a small change in the deposition curve from 18 to 15%. A similar deposition curve profile was found for the TB airway.

Suggested Citation

  • Kiao Inthavong & Kai Zhang & Jiyuan Tu, 2011. "Numerical modelling of nanoparticle deposition in the nasal cavity and the tracheobronchial airway," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 14(07), pages 633-643.
  • Handle: RePEc:taf:gcmbxx:v:14:y:2011:i:07:p:633-643
    DOI: 10.1080/10255842.2010.493510
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10255842.2010.493510
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10255842.2010.493510?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Parth Singh & Vishnu Raghav & Vignesh Padhmashali & Gunther Paul & Mohammad S. Islam & Suvash C. Saha, 2020. "Airflow and Particle Transport Prediction through Stenosis Airways," IJERPH, MDPI, vol. 17(3), pages 1-19, February.
    2. Concepción Paz & Eduardo Suárez & Oscar Parga & Jesús Vence, 2017. "Glottis effects on the cough clearance process simulated with a CFD dynamic mesh and Eulerian wall film model," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 20(12), pages 1326-1338, September.
    3. Ismael R. Cal & Jose Luis Cercos-Pita & Daniel Duque, 2017. "The incompressibility assumption in computational simulations of nasal airflow," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 20(8), pages 853-868, June.
    4. Mohammad S. Islam & Gunther Paul & Hui X. Ong & Paul M. Young & Y. T. Gu & Suvash C. Saha, 2020. "A Review of Respiratory Anatomical Development, Air Flow Characterization and Particle Deposition," IJERPH, MDPI, vol. 17(2), pages 1-28, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gcmbxx:v:14:y:2011:i:07:p:633-643. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/gcmb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.