IDEAS home Printed from https://ideas.repec.org/a/taf/gcmbxx/v12y2009i4p407-413.html
   My bibliography  Save this article

A multi-objective evolutionary algorithm for protein structure prediction with immune operators

Author

Listed:
  • M.V. Judy
  • K.S. Ravichandran
  • K. Murugesan

Abstract

Genetic algorithms (GA) are often well suited for optimisation problems involving several conflicting objectives. It is more suitable to model the protein structure prediction problem as a multi-objective optimisation problem since the potential energy functions used in the literature to evaluate the conformation of a protein are based on the calculations of two different interaction energies: local (bond atoms) and non-local (non-bond atoms) and experiments have shown that those types of interactions are in conflict, by using the potential energy function, Chemistry at Harvard Macromolecular Mechanics. In this paper, we have modified the immune inspired Pareto archived evolutionary strategy (I-PAES) algorithm and denoted it as MI-PAES. It can effectively exploit some prior knowledge about the hydrophobic interactions, which is one of the most important driving forces in protein folding to make vaccines. The proposed MI-PAES is comparable with other evolutionary algorithms proposed in literature, both in terms of best solution found and the computational time and often results in much better search ability than that of the canonical GA.

Suggested Citation

  • M.V. Judy & K.S. Ravichandran & K. Murugesan, 2009. "A multi-objective evolutionary algorithm for protein structure prediction with immune operators," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 12(4), pages 407-413.
  • Handle: RePEc:taf:gcmbxx:v:12:y:2009:i:4:p:407-413
    DOI: 10.1080/10255840802649715
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10255840802649715
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10255840802649715?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jones, D. F. & Mirrazavi, S. K. & Tamiz, M., 2002. "Multi-objective meta-heuristics: An overview of the current state-of-the-art," European Journal of Operational Research, Elsevier, vol. 137(1), pages 1-9, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schweiger, Katharina & Sahamie, Ramin, 2013. "A hybrid Tabu Search approach for the design of a paper recycling network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 50(C), pages 98-119.
    2. Gerardo Minella & Rubén Ruiz & Michele Ciavotta, 2008. "A Review and Evaluation of Multiobjective Algorithms for the Flowshop Scheduling Problem," INFORMS Journal on Computing, INFORMS, vol. 20(3), pages 451-471, August.
    3. Surafel Luleseged Tilahun & Mohamed A. Tawhid, 2019. "Swarm hyperheuristic framework," Journal of Heuristics, Springer, vol. 25(4), pages 809-836, October.
    4. T. Gómez & M. Hernández & J. Molina & M. León & E. Aldana & R. Caballero, 2011. "A multiobjective model for forest planning with adjacency constraints," Annals of Operations Research, Springer, vol. 190(1), pages 75-92, October.
    5. Frota Neto, J. Quariguasi & Bloemhof-Ruwaard, J.M. & van Nunen, J.A.E.E. & van Heck, E., 2008. "Designing and evaluating sustainable logistics networks," International Journal of Production Economics, Elsevier, vol. 111(2), pages 195-208, February.
    6. Tsai, Wen-Ping & Cheng, Chung-Lien & Uen, Tinn-Shuan & Zhou, Yanlai & Chang, Fi-John, 2019. "Drought mitigation under urbanization through an intelligent water allocation system," Agricultural Water Management, Elsevier, vol. 213(C), pages 87-96.
    7. C Alabas-Uslu, 2008. "A self-tuning heuristic for a multi-objective vehicle routing problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(7), pages 988-996, July.
    8. Hernandez, M. & Gómez, T. & Molina, J. & León, M.A. & Caballero, R., 2014. "Efficiency in forest management: A multiobjective harvest scheduling model," Journal of Forest Economics, Elsevier, vol. 20(3), pages 236-251.
    9. Juan Villegas & Fernando Palacios & Andrés Medaglia, 2006. "Solution methods for the bi-objective (cost-coverage) unconstrained facility location problem with an illustrative example," Annals of Operations Research, Springer, vol. 147(1), pages 109-141, October.
    10. Selçuklu, Saltuk Buğra & Coit, David W. & Felder, Frank A., 2020. "Pareto uncertainty index for evaluating and comparing solutions for stochastic multiple objective problems," European Journal of Operational Research, Elsevier, vol. 284(2), pages 644-659.
    11. Isada, Yuriko & James, Ross J. W. & Nakagawa, Yuji, 2005. "An approach for solving nonlinear multi-objective separable discrete optimization problem with one constraint," European Journal of Operational Research, Elsevier, vol. 162(2), pages 503-513, April.
    12. Xiaofeng Lv & Deyun Zhou & Yongchuan Tang & Ling Ma, 2018. "An Improved Test Selection Optimization Model Based on Fault Ambiguity Group Isolation and Chaotic Discrete PSO," Complexity, Hindawi, vol. 2018, pages 1-10, January.
    13. Sieja, Marek & Wach, Krzysztof, 2008. "Implementacja algorytmów ewolucyjnych w gospodarce opartej na wiedzy [Implementation of Evolutionary Algorithms in the Knowledge-Based Economy]," MPRA Paper 31620, University Library of Munich, Germany.
    14. Chen, Gang & Govindan, Kannan & Golias, Mihalis M., 2013. "Reducing truck emissions at container terminals in a low carbon economy: Proposal of a queueing-based bi-objective model for optimizing truck arrival pattern," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 55(C), pages 3-22.
    15. Turkensteen, Marcel & Sierksma, Gerard & Wieringa, Jaap E., 2011. "Balancing the fit and logistics costs of market segmentations," European Journal of Operational Research, Elsevier, vol. 213(1), pages 340-348, August.
    16. Xiaoya Ma & Xiang Zhao, 2015. "Land Use Allocation Based on a Multi-Objective Artificial Immune Optimization Model: An Application in Anlu County, China," Sustainability, MDPI, vol. 7(11), pages 1-20, November.
    17. Matthias Ehrgott & Xavier Gandibleux, 2004. "Approximative solution methods for multiobjective combinatorial optimization," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 12(1), pages 1-63, June.
    18. Gang Chen & Liping Jiang, 2016. "Managing customer arrivals with time windows: a case of truck arrivals at a congested container terminal," Annals of Operations Research, Springer, vol. 244(2), pages 349-365, September.
    19. Arroyo, Jose Elias Claudio & Armentano, Vinicius Amaral, 2005. "Genetic local search for multi-objective flowshop scheduling problems," European Journal of Operational Research, Elsevier, vol. 167(3), pages 717-738, December.
    20. Uttam Karki & Pratik J. Parikh, 2024. "Visibility-based layout of a hospital unit – An optimization approach," Health Care Management Science, Springer, vol. 27(2), pages 188-207, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gcmbxx:v:12:y:2009:i:4:p:407-413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/gcmb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.