IDEAS home Printed from https://ideas.repec.org/a/taf/gcmbxx/v12y2009i4p371-384.html
   My bibliography  Save this article

Kinematic analysis of over-determinate biomechanical systems

Author

Listed:
  • M.S. Andersen
  • M. Damsgaard
  • J. Rasmussen

Abstract

In this paper, we introduce a new general method for kinematic analysis of rigid multi body systems subject to holonomic constraints. The method extends the standard analysis of kinematically determinate rigid multi body systems to the over-determinate case. This is accomplished by introducing a constrained optimisation problem with the objective function given as a function of the set of system equations that are allowed to be violated while the remaining equations define the feasible set.We show that exact velocity and acceleration analysis can also be performed by solving linear sets of equations, originating from differentiation of the Karush–Kuhn–Tucker optimality conditions.The method is applied to the analysis of an 18 degrees-of-freedom gait model where the kinematical drivers are prescribed with data from a motion capture experiment.The results show that significant differences are obtained between applying standard kinematic analysis or minimising the least-square errors on the two fully equivalent 3D gait models with only the way the experimental data is processed being different.

Suggested Citation

  • M.S. Andersen & M. Damsgaard & J. Rasmussen, 2009. "Kinematic analysis of over-determinate biomechanical systems," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 12(4), pages 371-384.
  • Handle: RePEc:taf:gcmbxx:v:12:y:2009:i:4:p:371-384
    DOI: 10.1080/10255840802459412
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10255840802459412
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10255840802459412?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mark Tröster & Sarah Budde & Christophe Maufroy & Michael Skipper Andersen & John Rasmussen & Urs Schneider & Thomas Bauernhansl, 2022. "Biomechanical Analysis of Stoop and Free-Style Squat Lifting and Lowering with a Generic Back-Support Exoskeleton Model," IJERPH, MDPI, vol. 19(15), pages 1-16, July.
    2. Hossein Ehsani & Mostafa Rostami & Mohammad Gudarzi, 2016. "A general-purpose framework to simulate musculoskeletal system of human body: using a motion tracking approach," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 19(3), pages 306-319, February.
    3. Vincent Richard & Giuliano Lamberto & Tung-Wu Lu & Aurelio Cappozzo & Raphaël Dumas, 2016. "Knee Kinematics Estimation Using Multi-Body Optimisation Embedding a Knee Joint Stiffness Matrix: A Feasibility Study," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-18, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gcmbxx:v:12:y:2009:i:4:p:371-384. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/gcmb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.