IDEAS home Printed from https://ideas.repec.org/a/taf/eurjfi/v22y2016i13p1351-1362.html
   My bibliography  Save this article

Estimating loss-given default through advanced credibility theory

Author

Listed:
  • Stefano Bonini
  • Giuliana Caivano

Abstract

The New Basel Accord allows internationally active banking organizations to calculate their credit risk capital requirements using an internal ratings based approach, subject to supervisory review. One of the modeling components is the loss-given default (LGD): it represents the credit loss for a bank when extreme events occur that influence the obligor ability to repay his debts to the bank. Among researchers and practitioners the use of statistical models such as linear regression, Tobit or decision trees is quite common in order to compute LGDs as a forecasting of historical losses. However, these statistical techniques do not seem to provide robust estimation and show low performance. These results could be driven by some factors that make differences in LGD, such as the presence and quality of collateral, timing of the business cycle, workout process management and M&A activity among banks. This paper evaluates an alternative method of modeling LGD using a technique based on advanced credibility theory typically used in actuarial modeling. This technique provides a statistical component to the credit and workout experts’ opinion embedded in the collateral and workout management process and improve the predictive power of forecasting. The model has been applied to an Italian Bank Retail portfolio represented by Overdrafts; the application of credibility theory provides a higher predictive power of LGD estimation and an out-of-time sample backtesting has shown a stable accuracy of estimates with respect to the traditional LGD model.

Suggested Citation

  • Stefano Bonini & Giuliana Caivano, 2016. "Estimating loss-given default through advanced credibility theory," The European Journal of Finance, Taylor & Francis Journals, vol. 22(13), pages 1351-1362, October.
  • Handle: RePEc:taf:eurjfi:v:22:y:2016:i:13:p:1351-1362
    DOI: 10.1080/1351847X.2013.870918
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/1351847X.2013.870918
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/1351847X.2013.870918?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dimitris Andriosopoulos & Michalis Doumpos & Panos M. Pardalos & Constantin Zopounidis, 2019. "Computational approaches and data analytics in financial services: A literature review," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(10), pages 1581-1599, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:eurjfi:v:22:y:2016:i:13:p:1351-1362. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/REJF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.