IDEAS home Printed from https://ideas.repec.org/a/taf/eurjfi/v19y2013i3p180-205.html
   My bibliography  Save this article

GP algorithm versus hybrid and mixed neural networks

Author

Listed:
  • Christian L. Dunis
  • Jason Laws
  • Andreas Karathanasopoulos

Abstract

In the current paper, we present an integrated genetic programming (GP) environment called java GP modelling. The java GP modelling environment is an implementation of the steady-state GP algorithm. This algorithm evolves tree-based structures that represent models of inputs and outputs. The motivation of this paper is to compare the GP algorithm with neural network (NN) architectures when applied to the task of forecasting and trading the ASE 20 Greek Index (using autoregressive terms as inputs). This is done by benchmarking the forecasting performance of the GP algorithm and six different autoregressive moving average model (ARMA) NN combination designs representing a Hybrid, Mixed Higher Order Neural Network (HONN), a Hybrid, Mixed Recurrent Neural Network (RNN), a Hybrid, Mixed classic Multilayer Perceptron with some traditional techniques, either statistical such as a an ARMA or technical such as a moving average convergence/divergence model, and a naïve trading strategy. More specifically, the trading performance of all models is investigated in a forecast and trading simulation on ASE 20 time-series closing prices over the period 2001--2008, using the last one and a half years for out-of-sample testing. We use the ASE 20 daily series as many financial institutions are ready to trade at this level, and it is therefore possible to leave orders with a bank for business to be transacted on that basis. As it turns out, the GP model does remarkably well and outperforms all other models in a simple trading simulation exercise. This is also the case when more sophisticated trading strategies using confirmation filters and leverage are applied, as the GP model still produces better results and outperforms all other NN and traditional statistical models in terms of annualized return.

Suggested Citation

  • Christian L. Dunis & Jason Laws & Andreas Karathanasopoulos, 2013. "GP algorithm versus hybrid and mixed neural networks," The European Journal of Finance, Taylor & Francis Journals, vol. 19(3), pages 180-205, March.
  • Handle: RePEc:taf:eurjfi:v:19:y:2013:i:3:p:180-205
    DOI: 10.1080/1351847X.2012.679740
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/1351847X.2012.679740
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/1351847X.2012.679740?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Monira Essa Aloud, 2020. "The role of attribute selection in Deep ANNs learning framework for high‐frequency financial trading," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 27(2), pages 43-54, April.
    2. Viktor Manahov, 2018. "The rise of the machines in commodities markets: new evidence obtained using Strongly Typed Genetic Programming," Annals of Operations Research, Springer, vol. 260(1), pages 321-352, January.
    3. Carè, Rosella & Cumming, Douglas, 2024. "Technology and automation in financial trading: A bibliometric review," Research in International Business and Finance, Elsevier, vol. 71(C).
    4. Manahov, Viktor & Urquhart, Andrew, 2021. "The efficiency of Bitcoin: A strongly typed genetic programming approach to smart electronic Bitcoin markets," International Review of Financial Analysis, Elsevier, vol. 73(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:eurjfi:v:19:y:2013:i:3:p:180-205. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/REJF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.