Author
Listed:
- David I. Harvey
- Stephen J. Leybourne
- A. M. Robert Taylor
Abstract
Predictive regression methods are widely used to examine the predictability of (excess) stock returns by lagged financial variables characterized by unknown degrees of persistence and endogeneity. We develop a new hybrid test for predictability in these circumstances based on simple regression t-statistics. Where the predictor is endogenous, the optimal, but infeasible, test for predictability is based on the t-statistic on the lagged predictor in the basic predictive regression augmented with the current period innovation driving the predictor. We propose a feasible version of this augmented test, designed for the case where the predictor is an endogenous near-unit root process, using a GLS-based estimate of the innovation used in the infeasible test regression. The limiting null distribution of this statistic depends on both the endogeneity correlation parameter and the local-to-unity parameter characterizing the predictor. A method for obtaining asymptotic critical values is discussed and response surfaces are provided. We compare the asymptotic power properties of the feasible augmented test with those of a (non augmented) t-test recently considered in Harvey et al. and show that the augmented test is more powerful in the strongly persistent predictor case. We then propose using a weighted combination of the augmented statistic and the t-statistic of Harvey et al., where the weights are obtained using the p-values from a unit root test on the predictor. We find this can further improve asymptotic power in cases where the predictor has persistence at or close to that of a unit root process. Our final hybrid testing procedure then embeds the weighted statistic within a switching-based procedure which makes use of a standard predictive regression t-test, compared with standard normal critical values, when there is evidence for the predictor being weakly persistent. Monte Carlo simulations suggest that overall our new hybrid test displays superior finite sample performance to comparable extant tests.
Suggested Citation
David I. Harvey & Stephen J. Leybourne & A. M. Robert Taylor, 2023.
"Improved tests for stock return predictability,"
Econometric Reviews, Taylor & Francis Journals, vol. 42(9-10), pages 834-861, November.
Handle:
RePEc:taf:emetrv:v:42:y:2023:i:9-10:p:834-861
DOI: 10.1080/07474938.2023.2222634
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:42:y:2023:i:9-10:p:834-861. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.tandfonline.com/LECR20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.