Author
Listed:
- Carol Alexander
- Emese Lazar
Abstract
GARCH models are called ‘strong’ or ‘weak’ depending on the presence of parametric distributional assumptions for the innovations. The symmetric weak GARCH(1, 1) is the only model in the GARCH class that has been proved to be closed under the temporal aggregation property . This property is fundamental in two respects: (a) for a time-series model to be invariant to the data frequency; and (b) for a unique option-pricing model to exist as a continuous-time limit. While the symmetric weak GARCH(1, 1) is temporally aggregating precisely because it makes no parametric distributional assumptions, the lack of these also makes it harder to derive theoretical results. Rising to this challenge, we prove that its continuous-time limit is a geometric mean-reverting stochastic volatility process with diffusion coefficient governed by a time-varying kurtosis of log returns. When log returns are normal the limit coincides with Nelson’s strong GARCH(1, 1) limit. But unlike strong GARCH models, the weak GARCH(1, 1) has a unique limit because it makes no assumptions about the convergence of model parameters. The convergence of each parameter is uniquely determined by the temporal aggregation property. Empirical results show that the additional time-varying kurtosis parameter enhances both term-structure and smile effects in implied volatilities, thereby affording greater flexibility for the weak GARCH limit to fit real-world data from option prices.
Suggested Citation
Carol Alexander & Emese Lazar, 2021.
"The continuous limit of weak GARCH,"
Econometric Reviews, Taylor & Francis Journals, vol. 40(2), pages 197-216, February.
Handle:
RePEc:taf:emetrv:v:40:y:2021:i:2:p:197-216
DOI: 10.1080/07474938.2020.1799592
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:40:y:2021:i:2:p:197-216. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.tandfonline.com/LECR20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.