IDEAS home Printed from https://ideas.repec.org/a/taf/emetrv/v39y2020i2p135-157.html
   My bibliography  Save this article

Modeling temporal treatment effects with zero inflated semi-parametric regression models: The case of local development policies in France

Author

Listed:
  • Hervé Cardot
  • Antonio Musolesi

Abstract

A semi-parametric approach is proposed to estimate the variation along time of the effects of two distinct public policies that were devoted to boost rural development in France over a similar period of time. At a micro data level, it is often observed that the dependent variable, such as local employment, does not vary along time, so that we face a kind of zero inflated phenomenon that cannot be dealt with a continuous response model. We introduce a conditional mixture model which combines a mass at zero and a continuous response. The suggested zero inflated semi-parametric statistical approach relies on the flexibility and modularity of additive models with the ability of panel data to deal with selection bias and to allow for the estimation of dynamic treatment effects. In this multiple treatment analysis, we find evidence of interesting patterns of temporal treatment effects with relevant nonlinear policy effects. The adopted semi-parametric modeling also offers the possibility of making a counterfactual analysis at an individual level. The methodology is illustrated and compared with parametric linear approaches on a few municipalities for which the mean evolution of the potential outcomes is estimated under the different possible treatments.

Suggested Citation

  • Hervé Cardot & Antonio Musolesi, 2020. "Modeling temporal treatment effects with zero inflated semi-parametric regression models: The case of local development policies in France," Econometric Reviews, Taylor & Francis Journals, vol. 39(2), pages 135-157, February.
  • Handle: RePEc:taf:emetrv:v:39:y:2020:i:2:p:135-157
    DOI: 10.1080/07474938.2019.1690193
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07474938.2019.1690193
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07474938.2019.1690193?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Massimiliano Mazzanti & Antonio Musolesi, 2020. "Modeling Green Knowledge Production and Environmental Policies with Semiparametric Panel Data Regression models," SEEDS Working Papers 1420, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Sep 2020.
    2. Hervé Cardot & Antonio Musolesi, 2021. "Zero-inflated regression for unobserved effects panel data models and difference-in-differences estimation," SEEDS Working Papers 1121, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Dec 2021.
    3. Massimiliano Mazzanti & Antonio Musolesi, 2020. "A Semiparametric Analysis of Green Inventions and Environmental Policies," SEEDS Working Papers 0920, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Jun 2020.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:39:y:2020:i:2:p:135-157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.tandfonline.com/LECR20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.