IDEAS home Printed from https://ideas.repec.org/a/taf/emetrv/v39y2020i1p1-26.html
   My bibliography  Save this article

A Projection-Based Nonparametric Test of Conditional Quantile Independence

Author

Listed:
  • Milan Nedeljkovic

Abstract

This paper proposes a nonparametric procedure for testing conditional quantile independence using projections. Relative to existing smoothed nonparametric tests, the resulting test statistic: (i) detects the high frequency local alternatives that converge to the null hypothesis in probability at faster rate and, (ii) yields improvements in the finite sample power when a large number of variables are included under the alternative. In addition, it allows the researcher to include qualitative information and, if desired, direct the test against specific subsets of alternatives without imposing any functional form on them. We use the weighted Nadaraya-Watson (WNW) estimator of the conditional quantile function avoiding the boundary problems in estimation and testing and prove weak uniform consistency (with rate) of the WNW estimator for absolutely regular processes. The procedure is applied to a study of risk spillovers among the banks. We show that the methodology generalizes some of the recently proposed measures of systemic risk and we use the quantile framework to assess the intensity of risk spillovers among individual financial institutions.

Suggested Citation

  • Milan Nedeljkovic, 2020. "A Projection-Based Nonparametric Test of Conditional Quantile Independence," Econometric Reviews, Taylor & Francis Journals, vol. 39(1), pages 1-26, January.
  • Handle: RePEc:taf:emetrv:v:39:y:2020:i:1:p:1-26
    DOI: 10.1080/07474938.2019.1690192
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07474938.2019.1690192
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07474938.2019.1690192?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yannick Hoga, 2024. "Persistence-Robust Break Detection in Predictive Quantile and CoVaR Regressions," Papers 2410.05861, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:39:y:2020:i:1:p:1-26. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.tandfonline.com/LECR20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.