IDEAS home Printed from https://ideas.repec.org/a/taf/emetrv/v39y2020i10p1014-1041.html
   My bibliography  Save this article

Identification and estimation of average causal effects when treatment status is ignorable within unobserved strata

Author

Listed:
  • John Gardner

Abstract

This paper extends matching and propensity-score reweighting methods to settings in which unobserved variables influence both treatment assignment and counterfactual outcomes. Identification proceeds under the assumption that counterfactual outcomes are independent of treatment status conditional on observed covariates and membership in one of a finite set of latent classes. Individuals are first assigned to latent classes according to posterior probabilities of class membership derived from a finite-mixture model that relates a set of auxiliary variables to latent class membership. Average causal effects are then identified by comparing outcomes among treated and untreated individuals assigned to the same class, correcting for misclassifications arising in the first step. The identification procedure suggests computationally attractive latent-class matching and propensity-score reweighting estimators that obviate the need to directly estimate the distributions of counterfactual outcomes. In Monte Carlo studies, the resulting estimates are centered around the correct average causal effects with minimal loss of precision compared to competing estimators that misstate those effects. I apply the methods to estimate the effect of gang membership on violent delinquency.

Suggested Citation

  • John Gardner, 2020. "Identification and estimation of average causal effects when treatment status is ignorable within unobserved strata," Econometric Reviews, Taylor & Francis Journals, vol. 39(10), pages 1014-1041, November.
  • Handle: RePEc:taf:emetrv:v:39:y:2020:i:10:p:1014-1041
    DOI: 10.1080/07474938.2020.1735748
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07474938.2020.1735748
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07474938.2020.1735748?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Callaway, Brantly & Karami, Sonia, 2023. "Treatment effects in interactive fixed effects models with a small number of time periods," Journal of Econometrics, Elsevier, vol. 233(1), pages 184-208.
    2. Brantly Callaway & Emmanuel Selorm Tsyawo, 2023. "Treatment Effects in Staggered Adoption Designs with Non-Parallel Trends," Papers 2308.02899, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:39:y:2020:i:10:p:1014-1041. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.tandfonline.com/LECR20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.