IDEAS home Printed from https://ideas.repec.org/a/taf/emetrv/v38y2019i4p386-416.html
   My bibliography  Save this article

Nonstationary nonlinear quantile regression

Author

Listed:
  • Yoshimasa Uematsu

Abstract

This study examines estimation and inference based on quantile regression for parametric nonlinear models with an integrated time series covariate. We first derive the limiting distribution of the nonlinear quantile regression estimator and then consider testing for parameter restrictions, when the regression function is specified as an asymptotically homogeneous function. We also study linear-in-parameter regression models when the regression function is given by integrable regression functions as well as asymptotically homogeneous regression functions. We, furthermore, propose a fully modified estimator to reduce the bias in the original estimator under a certain set of conditions. Finally, simulation studies show that the estimators behave well, especially when the regression error term has a fat-tailed distribution.

Suggested Citation

  • Yoshimasa Uematsu, 2019. "Nonstationary nonlinear quantile regression," Econometric Reviews, Taylor & Francis Journals, vol. 38(4), pages 386-416, April.
  • Handle: RePEc:taf:emetrv:v:38:y:2019:i:4:p:386-416
    DOI: 10.1080/07474938.2017.1308056
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07474938.2017.1308056
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07474938.2017.1308056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christis Katsouris, 2023. "Quantile Time Series Regression Models Revisited," Papers 2308.06617, arXiv.org, revised Aug 2023.
    2. Lin, Yingqian & Tu, Yundong & Yao, Qiwei, 2020. "Estimation for double-nonlinear cointegration," Journal of Econometrics, Elsevier, vol. 216(1), pages 175-191.
    3. Christis Katsouris, 2023. "Structural Break Detection in Quantile Predictive Regression Models with Persistent Covariates," Papers 2302.05193, arXiv.org.
    4. Lin, Yingqian & Tu, Yundong, 2021. "On transformed linear cointegration models," Economics Letters, Elsevier, vol. 198(C).
    5. Lin, Yingqian & Tu, Yundong & Yao, Qiwei, 2020. "Estimation for double-nonlinear cointegration," LSE Research Online Documents on Economics 103830, London School of Economics and Political Science, LSE Library.
    6. Haiqi Li Author-Name-First: Haiqi & Jing Zhang & Chaowen Zheng, 2023. "Estimating and Testing for Functional Coefficient Quantile Cointegrating Regression," Economics Discussion Papers em-dp2023-07, Department of Economics, University of Reading.
    7. Tu, Yundong & Liang, Han-Ying & Wang, Qiying, 2022. "Nonparametric inference for quantile cointegrations with stationary covariates," Journal of Econometrics, Elsevier, vol. 230(2), pages 453-482.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:38:y:2019:i:4:p:386-416. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.tandfonline.com/LECR20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.