IDEAS home Printed from https://ideas.repec.org/a/taf/emetrv/v38y2019i2p170-192.html
   My bibliography  Save this article

Bias-corrected realized variance

Author

Listed:
  • Jin-Huei Yeh
  • Jying-Nan Wang

Abstract

We propose a novel “bias-corrected realized variance” (BCRV) estimator based upon the appropriate re-weighting of two realized variances calculated at different sampling frequencies. Our bias-correction methodology is found to be extremely accurate, with the finite sample variance being significantly minimized. In our Monte Carlo experiments and a finite sample MSE comparison of alternative estimators, the performance of our straightforward BCRV estimator is shown to be comparable to other widely-used integrated variance estimators. Given its simplicity, our BCRV estimator is likely to appeal to researchers and practitioners alike for the estimation of integrated variance.

Suggested Citation

  • Jin-Huei Yeh & Jying-Nan Wang, 2019. "Bias-corrected realized variance," Econometric Reviews, Taylor & Francis Journals, vol. 38(2), pages 170-192, February.
  • Handle: RePEc:taf:emetrv:v:38:y:2019:i:2:p:170-192
    DOI: 10.1080/07474938.2016.1222230
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07474938.2016.1222230
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07474938.2016.1222230?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Jying-Nan & Vigne, Samuel A. & Liu, Hung-Chun & Hsu, Yuan-Teng, 2024. "Hacks and the price synchronicity of bitcoin and ether," The Quarterly Review of Economics and Finance, Elsevier, vol. 95(C), pages 294-299.
    2. Sucarrat, Genaro, 2020. "Identification of Volatility Proxies as Expectations of Squared Financial Return," MPRA Paper 101953, University Library of Munich, Germany.
    3. Reschenhofer, Erhard & Mangat, Manveer Kaur & Stark, Thomas, 2020. "Volatility forecasts, proxies and loss functions," Journal of Empirical Finance, Elsevier, vol. 59(C), pages 133-153.
    4. Sucarrat, Genaro, 2021. "Identification of volatility proxies as expectations of squared financial returns," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1677-1690.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:38:y:2019:i:2:p:170-192. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.tandfonline.com/LECR20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.