IDEAS home Printed from https://ideas.repec.org/a/taf/emetrv/v38y2019i10p1202-1215.html
   My bibliography  Save this article

A joint test for parametric specification and independence in nonlinear regression models

Author

Listed:
  • Shuo Li
  • Yundong Tu

Abstract

This paper develops a testing procedure to simultaneously check (i) the independence between the error and the regressor(s), and (ii) the parametric specification in nonlinear regression models. This procedure generalizes the existing work of Sen and Sen [“Testing Independence and Goodness-of-fit in Linear Models,” Biometrika, 101, 927–942.] to a regression setting that allows any smooth parametric form of the regression function. We establish asymptotic theory for the test procedure under both conditional homoscedastic error and heteroscedastic error. The derived tests are easily implementable, asymptotically normal, and consistent against a large class of fixed alternatives. Besides, the local power performance is investigated. To calibrate the finite sample distribution of the test statistics, a smooth bootstrap procedure is proposed and found work well in simulation studies. Finally, two real data examples are analyzed to illustrate the practical merit of our proposed tests.

Suggested Citation

  • Shuo Li & Yundong Tu, 2019. "A joint test for parametric specification and independence in nonlinear regression models," Econometric Reviews, Taylor & Francis Journals, vol. 38(10), pages 1202-1215, November.
  • Handle: RePEc:taf:emetrv:v:38:y:2019:i:10:p:1202-1215
    DOI: 10.1080/07474938.2018.1536101
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07474938.2018.1536101
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07474938.2018.1536101?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fan, Caiyun & Lu, Wenbin & Zhou, Yong, 2021. "Testing error heterogeneity in censored linear regression," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:38:y:2019:i:10:p:1202-1215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.tandfonline.com/LECR20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.