IDEAS home Printed from https://ideas.repec.org/a/taf/emetrv/v32y2013i4p513-523.html
   My bibliography  Save this article

Empirical Likelihood-Based Inference for Poverty Measures with Relative Poverty Lines

Author

Listed:
  • Brennan S. Thompson

Abstract

In this article, we propose an empirical likelihood-based method of inference for decomposable poverty measures utilizing poverty lines which are some fraction of the median of the underlying income distribution. Specifically, we focus on making poverty comparisons between two subgroups of the population which share the same poverty line. Our proposed method is assessed using a Monte Carlo simulation and is applied to some Canadian household income data.

Suggested Citation

  • Brennan S. Thompson, 2013. "Empirical Likelihood-Based Inference for Poverty Measures with Relative Poverty Lines," Econometric Reviews, Taylor & Francis Journals, vol. 32(4), pages 513-523, December.
  • Handle: RePEc:taf:emetrv:v:32:y:2013:i:4:p:513-523
    DOI: 10.1080/07474938.2012.690671
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07474938.2012.690671
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07474938.2012.690671?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James B. McDonald, 2008. "Some Generalized Functions for the Size Distribution of Income," Economic Studies in Inequality, Social Exclusion, and Well-Being, in: Duangkamon Chotikapanich (ed.), Modeling Income Distributions and Lorenz Curves, chapter 3, pages 37-55, Springer.
    2. Davidson, Russell & Flachaire, Emmanuel, 2007. "Asymptotic and bootstrap inference for inequality and poverty measures," Journal of Econometrics, Elsevier, vol. 141(1), pages 141-166, November.
    3. Ian Preston, 1995. "Sampling Distributions of Relative Poverty Statistics," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 44(1), pages 91-99, March.
    4. Zheng, Buhong, 2001. "Statistical inference for poverty measures with relative poverty lines," Journal of Econometrics, Elsevier, vol. 101(2), pages 337-356, April.
    5. Kakwani, Nanak, 1993. "Statistical Inference in the Measurement of Poverty," The Review of Economics and Statistics, MIT Press, vol. 75(4), pages 632-639, November.
    6. Russell Davidson & Jean-Yves Duclos, 2000. "Statistical Inference for Stochastic Dominance and for the Measurement of Poverty and Inequality," Econometrica, Econometric Society, vol. 68(6), pages 1435-1464, November.
    7. Sen, Amartya K, 1976. "Poverty: An Ordinal Approach to Measurement," Econometrica, Econometric Society, vol. 44(2), pages 219-231, March.
    8. Bishop, John A & Formby, John P & Zheng, Buhong, 1997. "Statistical Inference and the Sen Index of Poverty," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 38(2), pages 381-387, May.
    9. Biewen, Martin, 2002. "Bootstrap inference for inequality, mobility and poverty measurement," Journal of Econometrics, Elsevier, vol. 108(2), pages 317-342, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mehdi, Tahsin & Stengos, Thanasis, 2014. "Empirical likelihood-based inference for the generalized entropy class of inequality measures," Economics Letters, Elsevier, vol. 123(1), pages 54-57.
    2. Tahsin Mehdi, 2020. "Testing for Stochastic Dominance up to a Common Relative Poverty Line," Econometrics, MDPI, vol. 8(1), pages 1-9, February.
    3. J. F. Muñoz & E. à lvarez-Verdejo & R. M. García-Fernández, 2018. "On Estimating the Poverty Gap and the Poverty Severity Indices With Auxiliary Information," Sociological Methods & Research, , vol. 47(3), pages 598-625, August.
    4. Pécastaing, Nicolas & Dávalos, Jorge & Inga, Andy, 2018. "The effect of Peru's CDM investments on households’ welfare: An econometric approach," Energy Policy, Elsevier, vol. 123(C), pages 198-207.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tim Goedemé, 2013. "How much Confidence can we have in EU-SILC? Complex Sample Designs and the Standard Error of the Europe 2020 Poverty Indicators," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 110(1), pages 89-110, January.
    2. Mehdi, Tahsin & Stengos, Thanasis, 2014. "Empirical likelihood-based inference for the generalized entropy class of inequality measures," Economics Letters, Elsevier, vol. 123(1), pages 54-57.
    3. Kenneth R. Simler & Channing Arndt, 2007. "Poverty Comparisons With Absolute Poverty Lines Estimated From Survey Data," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 53(2), pages 275-294, June.
    4. Tahsin Mehdi, 2020. "Testing for Stochastic Dominance up to a Common Relative Poverty Line," Econometrics, MDPI, vol. 8(1), pages 1-9, February.
    5. Lubrano, Michel & Ndoye, Abdoul Aziz Junior, 2016. "Income inequality decomposition using a finite mixture of log-normal distributions: A Bayesian approach," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 830-846.
    6. James E. Foster & Joel Greer & Erik Thorbecke, 2010. "The Foster-Greer-Thorbecke (FGT) Poverty Measures: Twenty-Five Years Later," Working Papers 2010-14, The George Washington University, Institute for International Economic Policy.
    7. Buhong Zheng, 2004. "Poverty comparisons with dependent samples," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 19(3), pages 419-428.
    8. Zheng, Buhong, 2001. "Statistical inference for poverty measures with relative poverty lines," Journal of Econometrics, Elsevier, vol. 101(2), pages 337-356, April.
    9. J. F. Muñoz & E. à lvarez-Verdejo & R. M. García-Fernández, 2018. "On Estimating the Poverty Gap and the Poverty Severity Indices With Auxiliary Information," Sociological Methods & Research, , vol. 47(3), pages 598-625, August.
    10. James Foster & Joel Greer & Erik Thorbecke, 2010. "The Foster–Greer–Thorbecke (FGT) poverty measures: 25 years later," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 8(4), pages 491-524, December.
    11. Davidson, Russell & Flachaire, Emmanuel, 2007. "Asymptotic and bootstrap inference for inequality and poverty measures," Journal of Econometrics, Elsevier, vol. 141(1), pages 141-166, November.
    12. Flachaire, Emmanuel & Nunez, Olivier, 2007. "Estimation of the income distribution and detection of subpopulations: An explanatory model," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3368-3380, April.
    13. Russell Davidson & Jean-Yves Duclos, 2000. "Statistical Inference for Stochastic Dominance and for the Measurement of Poverty and Inequality," Econometrica, Econometric Society, vol. 68(6), pages 1435-1464, November.
    14. Keshab Raj Bhattarai, 2007. "Analyses of Poverty and Income Redistribution," EcoMod2007 23900007, EcoMod.
    15. Stephen P. Jenkins & John Micklewright, 2007. "New Directions in the Analysis of Inequality and Poverty," Discussion Papers of DIW Berlin 700, DIW Berlin, German Institute for Economic Research.
    16. Kuan Xu, 2007. "U-Statistics and Their Asymptotic Results for Some Inequality and Poverty Measures," Econometric Reviews, Taylor & Francis Journals, vol. 26(5), pages 567-577.
    17. Kock, Anders Bredahl & Preinerstorfer, David & Veliyev, Bezirgen, 2023. "Treatment recommendation with distributional targets," Journal of Econometrics, Elsevier, vol. 234(2), pages 624-646.
    18. William Horrace & Joseph Marchand & Timothy Smeeding, 2008. "Ranking inequality: Applications of multivariate subset selection," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 6(1), pages 5-32, March.
    19. Frank A. Cowell & Emmanuel Flachaire, 2014. "Statistical Methods for Distributional Analysis," Working Papers halshs-01115996, HAL.
    20. LABAR, Kelly & BRESSON, Florent, 2011. "A multidimensional analysis of poverty in China from 1991 to 2006," China Economic Review, Elsevier, vol. 22(4), pages 646-668.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:32:y:2013:i:4:p:513-523. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.tandfonline.com/LECR20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.