IDEAS home Printed from https://ideas.repec.org/a/taf/emetrv/v28y2009i1-3p146-169.html
   My bibliography  Save this article

Regular Variation and Extremal Dependence of GARCH Residuals with Application to Market Risk Measures

Author

Listed:
  • Fabrizio Laurini
  • Jonathan Tawn

Abstract

Stock returns exhibit heavy tails and volatility clustering. These features, motivating the use of GARCH models, make it difficult to predict times and sizes of losses that might occur. Estimation of losses, like the Value-at-Risk, often assume that returns, normalized by the level of volatility, are Gaussian. Often under ARMA-GARCH modeling, such scaled returns are heavy tailed and show extremal dependence, whose strength reduces when increasing extreme levels. We model heavy tails of scaled returns with generalized Pareto distributions, while extremal dependence can be reduced by declustering data.

Suggested Citation

  • Fabrizio Laurini & Jonathan Tawn, 2009. "Regular Variation and Extremal Dependence of GARCH Residuals with Application to Market Risk Measures," Econometric Reviews, Taylor & Francis Journals, vol. 28(1-3), pages 146-169.
  • Handle: RePEc:taf:emetrv:v:28:y:2009:i:1-3:p:146-169
    DOI: 10.1080/07474930802387985
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/07474930802387985
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07474930802387985?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. So, Mike K.P. & Chan, Raymond K.S., 2014. "Bayesian analysis of tail asymmetry based on a threshold extreme value model," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 568-587.
    2. Zhang, Zhengjun & Zhu, Bin, 2016. "Copula structured M4 processes with application to high-frequency financial data," Journal of Econometrics, Elsevier, vol. 194(2), pages 231-241.
    3. Zhao, Zifeng & Zhang, Zhengjun & Chen, Rong, 2018. "Modeling maxima with autoregressive conditional Fréchet model," Journal of Econometrics, Elsevier, vol. 207(2), pages 325-351.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:28:y:2009:i:1-3:p:146-169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.tandfonline.com/LECR20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.