IDEAS home Printed from https://ideas.repec.org/a/taf/ecsysr/v26y2014i2p119-140.html
   My bibliography  Save this article

Can The Carbonizing Dragon Be Domesticated? Insights From A Decomposition Of Energy Consumption And Intensity In China, 1987--2007

Author

Listed:
  • Haiyan Zhang
  • Michael L. Lahr

Abstract

China has relied on energy to stimulate its booming economy. As a result, its share of world energy consumption rose to 17.3% in 2009 from 7.9% in 1978. Somewhat surprisingly, through 2000 its rate of energy consumption was about half its rate of economic growth. This trend changed after 2001 as energy consumption rose about 1.3 times more rapidly than did gross domestic product through 2005. Through heavy governmental influence, energy intensity subsequently reduced through 2007, but just marginally. This paper uses the structural decomposition approach to understand key drivers behind changes in China's energy intensity and its energy consumption from 1987 to 2007. In our model, energy intensity change was decomposed into five factors: changes in energy efficiency, changes in share of value added, changes in input structure, changes in consumption structure, and changes in consumption volume. This paper provides insights into how changes in China's economic structure, technology, urbanization, and lifestyle affect energy intensity and energy consumption.

Suggested Citation

  • Haiyan Zhang & Michael L. Lahr, 2014. "Can The Carbonizing Dragon Be Domesticated? Insights From A Decomposition Of Energy Consumption And Intensity In China, 1987--2007," Economic Systems Research, Taylor & Francis Journals, vol. 26(2), pages 119-140, June.
  • Handle: RePEc:taf:ecsysr:v:26:y:2014:i:2:p:119-140
    DOI: 10.1080/09535314.2014.880663
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/09535314.2014.880663
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/09535314.2014.880663?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ning Chang & Michael L. Lahr, 2016. "Changes in China’s production-source CO 2 emissions: insights from structural decomposition analysis and linkage analysis," Economic Systems Research, Taylor & Francis Journals, vol. 28(2), pages 224-242, June.
    2. Wen, Le & Guang, Fengtao & Sharp, Basil, 2021. "Dynamics in Aotearoa New Zealand’s energy consumption between 2006/2007 and 2012/2013," Energy, Elsevier, vol. 225(C).
    3. Su, Bin & Ang, B.W., 2015. "Multiplicative decomposition of aggregate carbon intensity change using input–output analysis," Applied Energy, Elsevier, vol. 154(C), pages 13-20.
    4. Wang, H. & Ang, B.W. & Su, Bin, 2017. "A Multi-region Structural Decomposition Analysis of Global CO2 Emission Intensity," Ecological Economics, Elsevier, vol. 142(C), pages 163-176.
    5. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Multiplicative structural decomposition analysis of energy and emission intensities: Some methodological issues," Energy, Elsevier, vol. 123(C), pages 47-63.
    6. Li-Jing Liu & Qiao-Mei Liang & Felix Creutzig & Nan Cheng & Lan-Cui Liu, 2021. "Electricity end-use and construction activity are key leverage points for co-controlling greenhouse gases and local pollution in China," Climatic Change, Springer, vol. 167(1), pages 1-22, July.
    7. Nagashima, Fumiya, 2018. "The sign reversal problem in structural decomposition analysis," Energy Economics, Elsevier, vol. 72(C), pages 307-312.
    8. Yan, Junna & Su, Bin, 2020. "What drive the changes in China's energy consumption and intensity during 12th Five-Year Plan period?," Energy Policy, Elsevier, vol. 140(C).
    9. Hongyun Han & Shu Wu, 2018. "Structural Change and Its Impact on the Energy Intensity of Agricultural Sector in China," Sustainability, MDPI, vol. 10(12), pages 1-23, December.
    10. Guevara, Zeus & Henriques, SofiaTeives & Sousa, Tânia, 2021. "Driving factors of differences in primary energy intensities of 14 European countries," Energy Policy, Elsevier, vol. 149(C).
    11. Fu, Xue & Lahr, Michael & Yaxiong, Zhang & Meng, Bo, 2017. "Actions on climate change, Intended Reducing carbon emissions in China via optimal industry shifts: Toward hi-tech industries, cleaner resources and higher carbon shares in less-develop regions," Energy Policy, Elsevier, vol. 102(C), pages 616-638.
    12. Alexander Vaninsky, 2018. "Optimal environment-friendly economic restructuring: the United States–China cooperation case study," Economic Change and Restructuring, Springer, vol. 51(3), pages 189-220, August.
    13. Su, Bin & Ang, B.W. & Li, Yingzhu, 2019. "Structural path and decomposition analysis of aggregate embodied energy and emission intensities," Energy Economics, Elsevier, vol. 83(C), pages 345-360.
    14. H. Wang & Chen Pan & P. Zhou, 2019. "Assessing the Role of Domestic Value Chains in China’s CO2 Emission Intensity: A Multi-Region Structural Decomposition Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(2), pages 865-890, October.
    15. Su, Bin & Ang, B.W., 2017. "Multiplicative structural decomposition analysis of aggregate embodied energy and emission intensities," Energy Economics, Elsevier, vol. 65(C), pages 137-147.
    16. Xiao Dai & Jian Wu & Liang Yan & Qian Zhang & Fangli Ruan & Dan Wang, 2019. "Industrial Structure Restructuring, Production Factor Allocation Analysis: Based on a Mineral Resource-Intensive City—Jiaozuo City," Sustainability, MDPI, vol. 11(4), pages 1-19, February.
    17. Zhang, Xiaomei & Su, Bin & Yang, Jun & Cong, Jianhui, 2022. "Analysis of Shanxi Province's energy consumption and intensity using input-output framework (2002–2017)," Energy, Elsevier, vol. 250(C).
    18. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei, 2018. "How does information and communication technology affect China's energy intensity? A three-tier structural decomposition analysis," Energy, Elsevier, vol. 151(C), pages 748-759.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:ecsysr:v:26:y:2014:i:2:p:119-140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CESR20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.