IDEAS home Printed from https://ideas.repec.org/a/taf/conmgt/v27y2009i1p73-87.html
   My bibliography  Save this article

Analysing decision variables that influence preliminary feasibility studies using data mining techniques

Author

Listed:
  • Sungmin Yun
  • Carlos Caldas

Abstract

The development of infrastructure contributes to the social and economic improvement of a country, and generally requires huge and immediate investments. To decide on appropriate infrastructure projects, many countries use preliminary feasibility studies (PFS). However, a preliminary feasibility study takes a relatively long time to complete. During this time, decision-making parameters such as the estimated project cost as well as the project environment may change. To identify the decision parameters that affect the feasibility analysis, data mining techniques are applied to analyse the Go/No Go decision-making process in infrastructure projects. The data mining analysis uses PFS data obtained from large-scale infrastructure projects in Korea. Classification models found 57 hidden rules in the PFS. Prediction models were also developed for Go/No Go decision making using an artificial neural network (ANN) and logistic regression analysis. In order to validate the results, the study evaluated the accuracies and errors of both the classification and the prediction model.

Suggested Citation

  • Sungmin Yun & Carlos Caldas, 2009. "Analysing decision variables that influence preliminary feasibility studies using data mining techniques," Construction Management and Economics, Taylor & Francis Journals, vol. 27(1), pages 73-87.
  • Handle: RePEc:taf:conmgt:v:27:y:2009:i:1:p:73-87
    DOI: 10.1080/01446190802596246
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/01446190802596246
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01446190802596246?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yoram Wind & Thomas L. Saaty, 1980. "Marketing Applications of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 26(7), pages 641-658, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Banai, Reza, 2010. "Evaluation of land use-transportation systems with the Analytic Network Process," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 3(1), pages 85-112.
    2. Pishchulov, Grigory & Trautrims, Alexander & Chesney, Thomas & Gold, Stefan & Schwab, Leila, 2019. "The Voting Analytic Hierarchy Process revisited: A revised method with application to sustainable supplier selection," International Journal of Production Economics, Elsevier, vol. 211(C), pages 166-179.
    3. Seung-Jin Han & Won-Jae Lee & So-Hee Kim & Sang-Hoon Yoon & Hyunwoong Pyun, 2022. "Assessing Expected Long-term Benefits for the Olympic Games: Delphi-AHP Approach from Korean Olympic Experts," SAGE Open, , vol. 12(4), pages 21582440221, December.
    4. Seyed Rakhshan & Ali Kamyad & Sohrab Effati, 2015. "Ranking decision-making units by using combination of analytical hierarchical process method and Tchebycheff model in data envelopment analysis," Annals of Operations Research, Springer, vol. 226(1), pages 505-525, March.
    5. V. Srinivasan & G. Shainesh & Anand K. Sharma, 2015. "An approach to prioritize customer-based, cost-effective service enhancements," The Service Industries Journal, Taylor & Francis Journals, vol. 35(14), pages 747-762, October.
    6. Mónica García-Melón & Blanca Pérez-Gladish & Tomás Gómez-Navarro & Paz Mendez-Rodriguez, 2016. "Assessing mutual funds’ corporate social responsibility: a multistakeholder-AHP based methodology," Annals of Operations Research, Springer, vol. 244(2), pages 475-503, September.
    7. Luis Pérez-Domínguez & Luis Alberto Rodríguez-Picón & Alejandro Alvarado-Iniesta & David Luviano Cruz & Zeshui Xu, 2018. "MOORA under Pythagorean Fuzzy Set for Multiple Criteria Decision Making," Complexity, Hindawi, vol. 2018, pages 1-10, April.
    8. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    9. Kumar B, Pradeep, 2021. "Changing Objectives of Firms and Managerial Preferences: A Review of Models in Microeconomics," MPRA Paper 106967, University Library of Munich, Germany, revised 13 Mar 2021.
    10. Greco, Salvatore & Ishizaka, Alessio & Tasiou, Menelaos & Torrisi, Gianpiero, 2018. "σ-µ efficiency analysis: A new methodology for evaluating units through composite indices," MPRA Paper 83569, University Library of Munich, Germany.
    11. Anirban Mukhopadhyay & Sugata Hazra & Debasish Mitra & C. Hutton & Abhra Chanda & Sandip Mukherjee, 2016. "Characterizing the multi-risk with respect to plausible natural hazards in the Balasore coast, Odisha, India: a multi-criteria analysis (MCA) appraisal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1495-1513, February.
    12. Chamoli, Sunil, 2015. "Hybrid FAHP (fuzzy analytical hierarchy process)-FTOPSIS (fuzzy technique for order preference by similarity of an ideal solution) approach for performance evaluation of the V down perforated baffle r," Energy, Elsevier, vol. 84(C), pages 432-442.
    13. H. S. C. Perera & W. K. R. Costa, 2008. "Analytic Hierarchy Process for Selection of Erp Software for Manufacturing Companies," Vision, , vol. 12(4), pages 1-11, October.
    14. G. La Scalia & F.P. Marra & J. Rühl & R. Sciortino & T. Caruso, 2016. "A fuzzy multi-criteria decision-making methodology to optimise olive agro-engineering processes based on geo-spatial technologies," International Journal of Management and Decision Making, Inderscience Enterprises Ltd, vol. 15(1), pages 1-15.
    15. Andersen, Steffen & Harrison, Glenn W. & Lau, Morten Igel & Rutström, Elisabet E., 2014. "Dual criteria decisions," Journal of Economic Psychology, Elsevier, vol. 41(C), pages 101-113.
      • Andersen, Steffen & Harrison, Glenn W. & Lau, Morten Igel & Rutström, Elisabet, 2009. "Dual Criteria Decisions," Working Papers 02-2009, Copenhagen Business School, Department of Economics.
    16. Mulliner, Emma & Smallbone, Kieran & Maliene, Vida, 2013. "An assessment of sustainable housing affordability using a multiple criteria decision making method," Omega, Elsevier, vol. 41(2), pages 270-279.
    17. Sajid Ali & Sang-Moon Lee & Choon-Man Jang, 2017. "Determination of the Most Optimal On-Shore Wind Farm Site Location Using a GIS-MCDM Methodology: Evaluating the Case of South Korea," Energies, MDPI, vol. 10(12), pages 1-22, December.
    18. Majid Ebrahimi & Hamid Nejadsoleymani & Mohammad Reza Mansouri Daneshvar, 2019. "Land suitability map and ecological carrying capacity for the recognition of touristic zones in the Kalat region, Iran: a multi-criteria analysis based on AHP and GIS," Asia-Pacific Journal of Regional Science, Springer, vol. 3(3), pages 697-718, October.
    19. Zeshui Xu, 2013. "Compatibility Analysis of Intuitionistic Fuzzy Preference Relations in Group Decision Making," Group Decision and Negotiation, Springer, vol. 22(3), pages 463-482, May.
    20. Choudhary, Devendra & Shankar, Ravi, 2012. "An STEEP-fuzzy AHP-TOPSIS framework for evaluation and selection of thermal power plant location: A case study from India," Energy, Elsevier, vol. 42(1), pages 510-521.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:conmgt:v:27:y:2009:i:1:p:73-87. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RCME20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.