IDEAS home Printed from https://ideas.repec.org/a/taf/cijwxx/v30y2014i3p475-494.html
   My bibliography  Save this article

Simulation modelling for water governance in basins

Author

Listed:
  • Peter Droogers
  • Johan Bouma

Abstract

Accelerating future water shortages require development of operational water governance models, as illustrated by three case studies: (1) upstream-downstream interactions in the Aral Sea basin, where science acts as problem recognizer, emphasizing scoping policies; (2) impact and adaptation of climate change on water and food supply in the Middle East and North Africa, where science acts as a mediator between perspectives, emphasizing scoping and a start of implementation policies; and (3) green water credits in Kenya, where science acts as advocate, emphasizing scoping and implementation policies in close interaction with stakeholders, including impulses from applied to basic research.

Suggested Citation

  • Peter Droogers & Johan Bouma, 2014. "Simulation modelling for water governance in basins," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 30(3), pages 475-494, September.
  • Handle: RePEc:taf:cijwxx:v:30:y:2014:i:3:p:475-494
    DOI: 10.1080/07900627.2014.903771
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07900627.2014.903771
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07900627.2014.903771?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huo, Ai-Di & Dang, Jian & Song, Jin-Xi & Chen, Xun Hong & Mao, Hai-Ru, 2016. "Simulation modeling for water governance in basins based on surface water and groundwater," Agricultural Water Management, Elsevier, vol. 174(C), pages 22-29.
    2. Jianhua Wang & Yongping Wei & Shan Jiang & Yong Zhao & Yuyan Zhou & Weihua Xiao, 2017. "Understanding the Human-Water Relationship in China during 722 B.C.-1911 A.D. from a Contradiction and Co-Evolutionary Perspective," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(3), pages 929-943, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:cijwxx:v:30:y:2014:i:3:p:475-494. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/cijw20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.