IDEAS home Printed from https://ideas.repec.org/a/taf/applec/v54y2022i50p5811-5826.html
   My bibliography  Save this article

Forecasting the Chinese stock market volatility: A regression approach with a t-distributed error

Author

Listed:
  • Mengxi He
  • Yaojie Zhang
  • Danyan Wen
  • Yudong Wang

Abstract

In this paper, we improve the ordinary least squares (OLS) estimation approach by replacing a normally distributed error with a t-distributed error. Empirically, we investigate the predictability of the Chinese stock market volatility based on this modified approach. Results show that the modified OLS method with a t-distributed error has a significantly stronger forecasting power than its counterpart with a normally distributed error. From an asset allocation perspective, the modified OLS approach can help a mean-variance investor obtain sizeable utility gains. We also conduct two extended empirical analyses and further verify the superiority of the regression approach with a t-distributed error. Our results are robust to a series of settings. Finally, we find that the regression approach with a t-distributed error shows greater tolerance for outliers by assigning smaller weights to them, thereby highlighting its superior performance.

Suggested Citation

  • Mengxi He & Yaojie Zhang & Danyan Wen & Yudong Wang, 2022. "Forecasting the Chinese stock market volatility: A regression approach with a t-distributed error," Applied Economics, Taylor & Francis Journals, vol. 54(50), pages 5811-5826, October.
  • Handle: RePEc:taf:applec:v:54:y:2022:i:50:p:5811-5826
    DOI: 10.1080/00036846.2022.2053653
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00036846.2022.2053653
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00036846.2022.2053653?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yaojie Zhang & Mengxi He & Yuqi Zhao & Xianfeng Hao, 2023. "Predicting stock realized variance based on an asymmetric robust regression approach," Bulletin of Economic Research, Wiley Blackwell, vol. 75(4), pages 1022-1047, October.
    2. Jin, Daxiang & He, Mengxi & Xing, Lu & Zhang, Yaojie, 2022. "Forecasting China's crude oil futures volatility: How to dig out the information of other energy futures volatilities?," Resources Policy, Elsevier, vol. 78(C).
    3. Yuqing Feng & Yaojie Zhang & Yudong Wang, 2024. "Out‐of‐sample volatility prediction: Rolling window, expanding window, or both?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(3), pages 567-582, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:applec:v:54:y:2022:i:50:p:5811-5826. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAEC20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.