IDEAS home Printed from https://ideas.repec.org/a/taf/applec/v51y2019i19p2011-2018.html
   My bibliography  Save this article

Predicting bid prices by using machine learning methods

Author

Listed:
  • Jong-Min Kim
  • Hojin Jung

Abstract

It is well-known that empirical analysis suffers from multicollinearity and high dimensionality. In particular, this is much more severe in an empirical study of itemized bids in highway procurement auctions. To overcome this obstacle, this article employs the regularized linear regression for the estimation of a more precise interval for project winning bids. The approach is put to the test using empirical data of highway procurement auctions in Vermont. In our empirical analysis, we first choose a set of crucial tasks that determine a bidder’s bid amounts by using the random forest variable selection method. Given the selected tasks, project bid forecasting is conducted. We compare our proposed methodology with the least square linear model based on the bias and the standard root mean square error of the bid estimates. There is evidence supporting that the suggested approach provides superior forecasts for an interval of winning bids over the competing model. As far as we know, this article is the first attempt to provide reference bids of highway construction contracts.

Suggested Citation

  • Jong-Min Kim & Hojin Jung, 2019. "Predicting bid prices by using machine learning methods," Applied Economics, Taylor & Francis Journals, vol. 51(19), pages 2011-2018, April.
  • Handle: RePEc:taf:applec:v:51:y:2019:i:19:p:2011-2018
    DOI: 10.1080/00036846.2018.1537477
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00036846.2018.1537477
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00036846.2018.1537477?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael J. Weir & Thomas W. Sproul, 2019. "Identifying Drivers of Genetically Modified Seafood Demand: Evidence from a Choice Experiment," Sustainability, MDPI, vol. 11(14), pages 1-21, July.
    2. Kim, Jong-Min & Kim, Dong H. & Jung, Hojin, 2021. "Applications of machine learning for corporate bond yield spread forecasting," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    3. Manuel J. García Rodríguez & Vicente Rodríguez Montequín & Francisco Ortega Fernández & Joaquín M. Villanueva Balsera, 2019. "Public Procurement Announcements in Spain: Regulations, Data Analysis, and Award Price Estimator Using Machine Learning," Complexity, Hindawi, vol. 2019, pages 1-20, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:applec:v:51:y:2019:i:19:p:2011-2018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAEC20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.