IDEAS home Printed from https://ideas.repec.org/a/taf/applec/v50y2018i23p2569-2599.html
   My bibliography  Save this article

Long range dependence in an emerging stock market’s sectors: volatility modelling and VaR forecasting

Author

Listed:
  • Bana Abuzayed
  • Nedal Al-Fayoumi
  • Lanouar Charfeddine

Abstract

This study evaluates the sector risk of the Qatar Stock Exchange (QSE), a recently upgraded emerging stock market, using value-at-risk models for the 7 January 2007–18 October 2015 period. After providing evidence for true long memory in volatility using the log-likelihood profile test of Qu and splitting the sample and dth differentiation tests of Shimotsu, we compare the FIGARCH, HYGARCH and FIAPARCH models under normal, Student-t and skewed-t innovation distributions based on in and out-of-sample VaR forecasts. The empirical results show that the skewed Student-t FIGARCH model generates the most accurate prediction of one-day-VaR forecasts. The policy implications for portfolio managers are also discussed.

Suggested Citation

  • Bana Abuzayed & Nedal Al-Fayoumi & Lanouar Charfeddine, 2018. "Long range dependence in an emerging stock market’s sectors: volatility modelling and VaR forecasting," Applied Economics, Taylor & Francis Journals, vol. 50(23), pages 2569-2599, May.
  • Handle: RePEc:taf:applec:v:50:y:2018:i:23:p:2569-2599
    DOI: 10.1080/00036846.2017.1403559
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00036846.2017.1403559
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00036846.2017.1403559?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Assaf, Ata & Bhandari, Avishek & Charif, Husni & Demir, Ender, 2022. "Multivariate long memory structure in the cryptocurrency market: The impact of COVID-19," International Review of Financial Analysis, Elsevier, vol. 82(C).
    2. Roman Kaminskiy & Nataliya Shakhovska & Jana Kajanová & Yurii Kryvenchuk, 2021. "Method of Distinguishing Styles by Fractal and Statistical Indicators of the Text as a Sequence of the Number of Letters in Its Words," Mathematics, MDPI, vol. 9(19), pages 1-16, September.
    3. Ata Assaf & Luis Alberiko Gil-Alana & Khaled Mokni, 2022. "True or spurious long memory in the cryptocurrency markets: evidence from a multivariate test and other Whittle estimation methods," Empirical Economics, Springer, vol. 63(3), pages 1543-1570, September.
    4. Tuttle, Jacob F. & Blackburn, Landen D. & Andersson, Klas & Powell, Kody M., 2021. "A systematic comparison of machine learning methods for modeling of dynamic processes applied to combustion emission rate modeling," Applied Energy, Elsevier, vol. 292(C).
    5. Charfeddine, Lanouar & Benlagha, Noureddine & Maouchi, Youcef, 2020. "Investigating the dynamic relationship between cryptocurrencies and conventional assets: Implications for financial investors," Economic Modelling, Elsevier, vol. 85(C), pages 198-217.
    6. Tripathy, Naliniprava, 2022. "Long memory and volatility persistence across BRICS stock markets," Research in International Business and Finance, Elsevier, vol. 63(C).
    7. Assaf, Ata & Mokni, Khaled & Yousaf, Imran & Bhandari, Avishek, 2023. "Long memory in the high frequency cryptocurrency markets using fractal connectivity analysis: The impact of COVID-19," Research in International Business and Finance, Elsevier, vol. 64(C).
    8. Charfeddine, Lanouar & Maouchi, Youcef, 2019. "Are shocks on the returns and volatility of cryptocurrencies really persistent?," Finance Research Letters, Elsevier, vol. 28(C), pages 423-430.
    9. Charfeddine, Lanouar & Khediri, Karim Ben & Mrabet, Zouhair, 2019. "The forward premium anomaly in the energy futures markets: A time-varying approach," Research in International Business and Finance, Elsevier, vol. 47(C), pages 600-615.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:applec:v:50:y:2018:i:23:p:2569-2599. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAEC20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.