IDEAS home Printed from https://ideas.repec.org/a/taf/apmtfi/v27y2020i5p345-373.html
   My bibliography  Save this article

Detecting and Repairing Arbitrage in Traded Option Prices

Author

Listed:
  • Samuel N. Cohen
  • Christoph Reisinger
  • Sheng Wang

Abstract

Option price data are used as inputs for model calibration, risk-neutral density estimation and many other financial applications. The presence of arbitrage in option price data can lead to poor performance or even failure of these tasks, making pre-processing of the data to eliminate arbitrage necessary. Most attention in the relevant literature has been devoted to arbitrage-free smoothing and filtering (i.e., removing) of data. In contrast to smoothing, which typically changes nearly all data, or filtering, which truncates data, we propose to repair data by only necessary and minimal changes. We formulate the data repair as a linear programming (LP) problem, where the no-arbitrage relations are constraints, and the objective is to minimize prices’ changes within their bid and ask price bounds. Through empirical studies, we show that the proposed arbitrage repair method gives sparse perturbations on data, and is fast when applied to real-world large-scale problems due to the LP formulation. In addition, we show that removing arbitrage from prices data by our repair method can improve model calibration with enhanced robustness and reduced calibration error.

Suggested Citation

  • Samuel N. Cohen & Christoph Reisinger & Sheng Wang, 2020. "Detecting and Repairing Arbitrage in Traded Option Prices," Applied Mathematical Finance, Taylor & Francis Journals, vol. 27(5), pages 345-373, September.
  • Handle: RePEc:taf:apmtfi:v:27:y:2020:i:5:p:345-373
    DOI: 10.1080/1350486X.2020.1846573
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/1350486X.2020.1846573
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/1350486X.2020.1846573?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Samuel N. Cohen & Christoph Reisinger & Sheng Wang, 2022. "Estimating risks of option books using neural-SDE market models," Papers 2202.07148, arXiv.org.
    2. Ariel Neufeld & Julian Sester, 2023. "Neural networks can detect model-free static arbitrage strategies," Papers 2306.16422, arXiv.org, revised Aug 2024.
    3. Ariel Neufeld & Antonis Papapantoleon & Qikun Xiang, 2023. "Model-Free Bounds for Multi-Asset Options Using Option-Implied Information and Their Exact Computation," Management Science, INFORMS, vol. 69(4), pages 2051-2068, April.
    4. Samuel N. Cohen & Derek Snow & Lukasz Szpruch, 2021. "Black-box model risk in finance," Papers 2102.04757, arXiv.org.
    5. Samuel N. Cohen & Christoph Reisinger & Sheng Wang, 2022. "Hedging option books using neural-SDE market models," Papers 2205.15991, arXiv.org.
    6. Arianna Mingone, 2022. "No arbitrage global parametrization for the eSSVI volatility surface," Papers 2204.00312, arXiv.org.
    7. Claude Martini & Arianna Mingone, 2023. "A closed form model-free approximation for the Initial Margin of option portfolios," Papers 2306.16346, arXiv.org.
    8. Ariel Neufeld & Julian Sester & Daiying Yin, 2022. "Detecting data-driven robust statistical arbitrage strategies with deep neural networks," Papers 2203.03179, arXiv.org, revised Feb 2024.
    9. Julian Sester, 2023. "On intermediate Marginals in Martingale Optimal Transportation," Papers 2307.09710, arXiv.org, revised Nov 2023.
    10. Jonathan Ansari & Eva Lütkebohmert & Ariel Neufeld & Julian Sester, 2024. "Improved robust price bounds for multi-asset derivatives under market-implied dependence information," Finance and Stochastics, Springer, vol. 28(4), pages 911-964, October.
    11. Samuel N. Cohen & Christoph Reisinger & Sheng Wang, 2021. "Arbitrage-free neural-SDE market models," Papers 2105.11053, arXiv.org, revised Aug 2021.
    12. Yannick Limmer & Blanka Horvath, 2023. "Robust Hedging GANs," Papers 2307.02310, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:27:y:2020:i:5:p:345-373. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAMF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.