Electricity Price Forecasting with Neural Networks on EPEX Order Books
Author
Abstract
Suggested Citation
DOI: 10.1080/1350486X.2020.1805337
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wagner, Andreas & Ramentol, Enislay & Schirra, Florian & Michaeli, Hendrik, 2022. "Short- and long-term forecasting of electricity prices using embedding of calendar information in neural networks," Journal of Commodity Markets, Elsevier, vol. 28(C).
- Adnan Yousaf & Rao Muhammad Asif & Mustafa Shakir & Ateeq Ur Rehman & Fawaz Alassery & Habib Hamam & Omar Cheikhrouhou, 2021. "A Novel Machine Learning-Based Price Forecasting for Energy Management Systems," Sustainability, MDPI, vol. 13(22), pages 1-26, November.
- Silvia Golia & Luigi Grossi & Matteo Pelagatti, 2022. "Machine Learning Models and Intra-Daily Market Information for the Prediction of Italian Electricity Prices," Forecasting, MDPI, vol. 5(1), pages 1-21, December.
- Adela Bâra & Simona-Vasilica Oprea & Bogdan George Tudorică, 2024. "From the East-European Regional Day-Ahead Markets to a Global Electricity Market," Computational Economics, Springer;Society for Computational Economics, vol. 63(6), pages 2525-2557, June.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:27:y:2020:i:3:p:189-206. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAMF20 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.