IDEAS home Printed from https://ideas.repec.org/a/taf/apmtfi/v26y2019i5p475-522.html
   My bibliography  Save this article

Structural Electricity Models and Asymptotically Normal Estimators to Quantify Parameter Risk

Author

Listed:
  • Cord Harms
  • Rüdiger Kiesel

Abstract

We estimate a structural electricity (multi-commodity) model based on historical spot and futures data (fuels and power prices, respectively) and quantify the inherent parameter risk using an average value at risk approach (‘expected shortfall’). The mathematical proofs use the theory of asymptotic statistics to derive a parameter risk measure. We use far in-the-money options to derive a confidence level and use it as a prudent present value adjustment when pricing a virtual power plant. Finally, we conduct a present value benchmarking to compare the approach of temperature-driven demand (based on load data) to an ‘implied demand approach’ (demand implied from observable power futures prices). We observe that the implied demand approach can easily capture observed electricity price volatility whereas the estimation against observable load data will lead to a gap, because – amongst others – the interplay of demand and supply is not captured in the data (i.e., unexpected mismatches).

Suggested Citation

  • Cord Harms & Rüdiger Kiesel, 2019. "Structural Electricity Models and Asymptotically Normal Estimators to Quantify Parameter Risk," Applied Mathematical Finance, Taylor & Francis Journals, vol. 26(5), pages 475-522, September.
  • Handle: RePEc:taf:apmtfi:v:26:y:2019:i:5:p:475-522
    DOI: 10.1080/1350486X.2020.1725582
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/1350486X.2020.1725582
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/1350486X.2020.1725582?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deschatre, Thomas & Féron, Olivier & Gruet, Pierre, 2021. "A survey of electricity spot and futures price models for risk management applications," Energy Economics, Elsevier, vol. 102(C).
    2. Thomas Deschatre & Olivier F'eron & Pierre Gruet, 2021. "A survey of electricity spot and futures price models for risk management applications," Papers 2103.16918, arXiv.org, revised Jul 2021.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:26:y:2019:i:5:p:475-522. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAMF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.