Author
Listed:
- Clément Ménassé
- Peter Tankov
Abstract
Financial markets based on Lévy processes are typically incomplete and option prices depend on risk attitudes of individual agents. In this context, the notion of utility indifference price has gained popularity in the academic circles. Although theoretically very appealing, this pricing method remains difficult to apply in practice, due to the high computational cost of solving the non-linear partial integro-differential equation associated to the indifference price. In this work, we develop closed-form approximations to exponential utility indifference prices in exponential Lévy models. To this end, we first establish a new non-asymptotic approximation of the indifference price which extends earlier results on small risk aversion asymptotics of this quantity. Next, we use this formula to derive a closed-form approximation of the indifference price by treating the Lévy model as a perturbation of the Black–Scholes model. This extends the methodology introduced in a recent paper for smooth linear functionals of Lévy processes (Černý et al. 2013) to non-linear and non-smooth functionals. Our formula represents the indifference price as the linear combination of the Black–Scholes price and correction terms which depend on the variance, skewness and kurtosis of the underlying Lévy process, and the derivatives of the Black–Scholes price. As a by-product, we obtain a simple approximation for the spread between the buyer’s and the seller’s indifference price. This formula allows to quantify, in a model-independent fashion, how sensitive a given product is to jump risk when jump size is small.
Suggested Citation
Clément Ménassé & Peter Tankov, 2016.
"Approximate indifference pricing in exponential Lévy models,"
Applied Mathematical Finance, Taylor & Francis Journals, vol. 23(3), pages 197-235, May.
Handle:
RePEc:taf:apmtfi:v:23:y:2016:i:3:p:197-235
DOI: 10.1080/1350486X.2016.1227270
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:23:y:2016:i:3:p:197-235. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAMF20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.