IDEAS home Printed from https://ideas.repec.org/a/taf/apmtfi/v23y2016i3p175-196.html
   My bibliography  Save this article

Counterparty Credit Exposures for Interest Rate Derivatives using the Stochastic Grid Bundling Method

Author

Listed:
  • Patrik Karlsson
  • Shashi Jain
  • Cornelis W. Oosterlee

Abstract

The regulatory credit value adjustment (CVA) for an outstanding over-the-counter (OTC) derivative portfolio is computed based on the portfolio exposure over its lifetime. Usually, the future portfolio exposure is approximated using the Monte Carlo simulation, as the portfolio value can be driven by several market risk-factors. For derivatives, such as Bermudan swaptions, that do not have an analytical approximation for their Mark-to-Market (MtM) value, the standard market practice is to use the regression functions from the least squares Monte Carlo method to approximate their MtM along simulated scenarios. However, such approximations have significant bias and noise, resulting in inaccurate CVA charge. In this paper, we extend the Stochastic Grid Bundling Method (SGBM) for the one-factor Gaussian short rate model, to efficiently and accurately compute Expected Exposure, Potential Future exposure and CVA for Bermudan swaptions. A novel contribution of the paper is that it demonstrates how different measures, for instance spot and terminal measure, can simultaneously be employed in the SGBM framework, to significantly reduce the variance and bias of the solution.

Suggested Citation

  • Patrik Karlsson & Shashi Jain & Cornelis W. Oosterlee, 2016. "Counterparty Credit Exposures for Interest Rate Derivatives using the Stochastic Grid Bundling Method," Applied Mathematical Finance, Taylor & Francis Journals, vol. 23(3), pages 175-196, May.
  • Handle: RePEc:taf:apmtfi:v:23:y:2016:i:3:p:175-196
    DOI: 10.1080/1350486X.2016.1226144
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/1350486X.2016.1226144
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/1350486X.2016.1226144?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kathrin Glau & Ricardo Pachon & Christian Potz, 2019. "Speed-up credit exposure calculations for pricing and risk management," Papers 1912.01280, arXiv.org.
    2. Ludovic Goudenège & Andrea Molent & Antonino Zanette, 2020. "Computing credit valuation adjustment solving coupled PIDEs in the Bates model," Computational Management Science, Springer, vol. 17(2), pages 163-178, June.
    3. Gijs Mast & Xiaoyu Shen & Fang Fang, 2023. "Fast calculation of Counterparty Credit exposures and associated sensitivities using fourier series expansion," Papers 2311.12575, arXiv.org.
    4. Alessandro Gnoatto & Athena Picarelli & Christoph Reisinger, 2020. "Deep xVA solver -- A neural network based counterparty credit risk management framework," Papers 2005.02633, arXiv.org, revised Dec 2022.
    5. Shi, Ruoshi & Zhao, Yanlong & Bao, Ying & Peng, Cheng, 2022. "Sensitivity-based Conditional Value at Risk (SCVaR): An efficient measurement of credit exposure for options," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    6. Li, Shuang & Peng, Cheng & Bao, Ying & Zhao, Yanlong, 2020. "Explicit expressions to counterparty credit exposures for Forward and European Option," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    7. T. van der Zwaard & L. A. Grzelak & C. W. Oosterlee, 2024. "On the Hull-White model with volatility smile for Valuation Adjustments," Papers 2403.14841, arXiv.org.
    8. Ludovic Gouden`ege & Andrea Molent & Antonino Zanette, 2018. "Computing Credit Valuation Adjustment solving coupled PIDEs in the Bates model," Papers 1809.05328, arXiv.org.
    9. Vikranth Lokeshwar Dhandapani & Shashi Jain, 2024. "Optimizing Neural Networks for Bermudan Option Pricing: Convergence Acceleration, Future Exposure Evaluation and Interpolation in Counterparty Credit Risk," Papers 2402.15936, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:23:y:2016:i:3:p:175-196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAMF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.