IDEAS home Printed from https://ideas.repec.org/a/taf/apmtfi/v20y2013i5p489-511.html
   My bibliography  Save this article

Pricing and Hedging of Lookback Options in Hyper-exponential Jump Diffusion Models

Author

Listed:
  • Hofer
  • Mayer

Abstract

In this article, we consider the problem of pricing lookback options in certain exponential L�vy market models. While in the classic Black-Scholes models the price of such options can be calculated in closed form, for more general asset price model, one typically has to rely on (rather time-intense) Monte-Carlo or partial (integro)-differential equation (P(I)DE) methods. However, for L�vy processes with double exponentially distributed jumps, the lookback option price can be expressed as one-dimensional Laplace transform (cf. Kou, S. G., Petrella, G., & Wang, H. (2005). Pricing path-dependent options with jump risk via Laplace transforms. The Kyoto Economic Review , 74 (9), 1--23.). The key ingredient to derive this representation is the explicit availability of the first passage time distribution for this particular L�vy process, which is well-known also for the more general class of hyper-exponential jump diffusions (HEJDs). In fact, Jeannin and Pistorius (Jeannin, M., & Pistorius, M. (2010). A transform approach to calculate prices and Greeks of barrier options driven by a class of L�vy processes. Quntitative Finance, 10 (6), 629--644.) were able to derive formulae for the Laplace transformed price of certain barrier options in market models described by HEJD processes. Here, we similarly derive the Laplace transforms of floating and fixed strike lookback option prices and propose a numerical inversion scheme, which allows, like Fourier inversion methods for European vanilla options, the calculation of lookback options with different strikes in one shot. Additionally, we give semi-analytical formulae for several Greeks of the option price and discuss a method of extending the proposed method to generalized hyper-exponential (as e.g. NIG or CGMY) models by fitting a suitable HEJD process. Finally, we illustrate the theoretical findings by some numerical experiments.

Suggested Citation

  • Hofer & Mayer, 2013. "Pricing and Hedging of Lookback Options in Hyper-exponential Jump Diffusion Models," Applied Mathematical Finance, Taylor & Francis Journals, vol. 20(5), pages 489-511, November.
  • Handle: RePEc:taf:apmtfi:v:20:y:2013:i:5:p:489-511
    DOI: 10.1080/1350486X.2013.774985
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/1350486X.2013.774985
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/1350486X.2013.774985?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Walter Farkas & Ludovic Mathys & Nikola Vasiljevi'c, 2020. "Intra-Horizon Expected Shortfall and Risk Structure in Models with Jumps," Papers 2002.04675, arXiv.org, revised Jan 2021.
    2. Walter Farkas & Ludovic Mathys & Nikola Vasiljević, 2021. "Intra‐Horizon expected shortfall and risk structure in models with jumps," Mathematical Finance, Wiley Blackwell, vol. 31(2), pages 772-823, April.
    3. Walter Farkas & Ludovic Mathys, 2020. "Geometric Step Options with Jumps. Parity Relations, PIDEs, and Semi-Analytical Pricing," Papers 2002.09911, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:20:y:2013:i:5:p:489-511. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAMF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.