IDEAS home Printed from https://ideas.repec.org/a/taf/apmtfi/v19y2012i6p553-586.html
   My bibliography  Save this article

On the Approximation of the SABR Model: A Probabilistic Approach

Author

Listed:
  • Joanne E. Kennedy
  • Subhankar Mitra
  • Duy Pham

Abstract

In this article, we derive a probabilistic approximation for three different versions of the SABR model: Normal, Log-Normal and a displaced diffusion version for the general case. Specifically, we focus on capturing the terminal distribution of the underlying process (conditional on the terminal volatility) to arrive at the implied volatilities of the corresponding European options for all strikes and maturities. Our resulting method allows us to work with a variety of parameters that cover the long-dated options and highly stress market condition. This is a different feature from other current approaches that rely on the assumption of very small total volatility and usually fail for longer than 10 years maturity or large volatility of volatility (Volvol).

Suggested Citation

  • Joanne E. Kennedy & Subhankar Mitra & Duy Pham, 2012. "On the Approximation of the SABR Model: A Probabilistic Approach," Applied Mathematical Finance, Taylor & Francis Journals, vol. 19(6), pages 553-586, December.
  • Handle: RePEc:taf:apmtfi:v:19:y:2012:i:6:p:553-586
    DOI: 10.1080/1350486X.2011.646523
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/1350486X.2011.646523
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/1350486X.2011.646523?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jaehyuk Choi & Chenru Liu & Byoung Ki Seo, 2019. "Hyperbolic normal stochastic volatility model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(2), pages 186-204, February.
    2. Jaehyuk Choi & Lilian Hu & Yue Kuen Kwok, 2024. "Efficient simulation of the SABR model," Papers 2408.01898, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:19:y:2012:i:6:p:553-586. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAMF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.