IDEAS home Printed from https://ideas.repec.org/a/taf/apmtfi/v17y2010i2p177-199.html
   My bibliography  Save this article

Risk Minimization for a Filtering Micromovement Model of Asset Price

Author

Listed:
  • Kiseop Lee
  • Yong Zeng

Abstract

The classical option hedging problems have mostly been studied under continuous-time or equally spaced discrete-time models, which ignore two important components in the actual price: random trading times and market microstructure noise. In this paper, we study optimal hedging strategies for European derivatives based on a filtering micromovement model of asset prices with the two commonly ignored characteristics. We employ the local risk-minimization criterion to develop optimal hedging strategies under full information. Then, we project the hedging strategies on the observed information to obtain hedging strategies under partial information. Furthermore, we develop a related nonlinear filtering technique under the minimal martingale measure for the computation of such hedging strategies.

Suggested Citation

  • Kiseop Lee & Yong Zeng, 2010. "Risk Minimization for a Filtering Micromovement Model of Asset Price," Applied Mathematical Finance, Taylor & Francis Journals, vol. 17(2), pages 177-199.
  • Handle: RePEc:taf:apmtfi:v:17:y:2010:i:2:p:177-199
    DOI: 10.1080/13504860903259852
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/13504860903259852
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/13504860903259852?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jie Xiong & Yong Zeng, 2011. "A branching particle approximation to a filtering micromovement model of asset price," Statistical Inference for Stochastic Processes, Springer, vol. 14(2), pages 111-140, May.
    2. Zhiqiang Li & Jie Xiong, 2015. "Stability of the filter with Poisson observations," Statistical Inference for Stochastic Processes, Springer, vol. 18(3), pages 293-313, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:17:y:2010:i:2:p:177-199. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAMF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.