IDEAS home Printed from https://ideas.repec.org/a/taf/apfiec/v20y2010i10p771-783.html
   My bibliography  Save this article

Forecasting accuracy of stochastic volatility, GARCH and EWMA models under different volatility scenarios

Author

Listed:
  • Jie Ding
  • Nigel Meade

Abstract

The forecasting of the volatility of asset returns is a prerequisite for many risk management tasks in finance. The objective here is to identify the volatility scenarios that favour either Generalized Autoregressive Conditional Heteroscedasticity (GARCH) or Stochastic Volatility (SV) models. Scenarios are defined by the persistence of volatility (its robustness to shocks) and the volatility of volatility. A simulation experiment generates return series using both volatility models for a range of volatility scenarios representative of that observed in real assets. Forecasts are generated from SV, GARCH and Exponentially Weighted Moving Average (EWMA) volatility models. SV model forecasts are only noticeably more accurate than GARCH in scenarios with very high volatility of volatility and a stochastic volatility generating process. For scenarios with medium volatility of volatility, there is little penalty for using EWMA regardless of the volatility generating process. A set of return time series selected from FX rates, equity indices, equities and commodities is used to validate the simulation-based results. Broadly speaking, the real series come from the medium volatility of volatility scenarios where EWMA forecasts are reliably accurate. The robust structure of EWMA appears to contribute to its greater forecasting accuracy than more flexible GARCH model.

Suggested Citation

  • Jie Ding & Nigel Meade, 2010. "Forecasting accuracy of stochastic volatility, GARCH and EWMA models under different volatility scenarios," Applied Financial Economics, Taylor & Francis Journals, vol. 20(10), pages 771-783.
  • Handle: RePEc:taf:apfiec:v:20:y:2010:i:10:p:771-783
    DOI: 10.1080/09603101003636188
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/09603101003636188
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/09603101003636188?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Kuang, 2021. "Conditional covariance matrix forecast using the hybrid exponentially weighted moving average approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1398-1419, December.
    2. El Jebari, Ouael & Hakmaoui, Abdelati, 2018. "GARCH Family Models vs EWMA: Which is the Best Model to Forecast Volatility of the Moroccan Stock Exchange Market? || Modelos de la familia GARCH vs EWMA: ¿cuál es el mejor modelo para pronosticar la ," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 26(1), pages 237-249, Diciembre.
    3. Farid Bagheri & Diego Reforgiato Recupero & Espen Sirnes, 2023. "Leveraging Return Prediction Approaches for Improved Value-at-Risk Estimation," Data, MDPI, vol. 8(8), pages 1-22, August.
    4. Narayan Tondapu, 2024. "Analyzing Currency Fluctuations: A Comparative Study of GARCH, EWMA, and IV Models for GBP/USD and EUR/GBP Pairs," Papers 2402.07435, arXiv.org.
    5. Valeria V. Lakshina, 2014. "The Fluke Of Stochastic Volatility Versus Garch Inevitability : Which Model Creates Better Forecasts?," HSE Working papers WP BRP 37/FE/2014, National Research University Higher School of Economics.
    6. Axel A. Araneda, 2021. "Asset volatility forecasting:The optimal decay parameter in the EWMA model," Papers 2105.14382, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apfiec:v:20:y:2010:i:10:p:771-783. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAFE20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.