IDEAS home Printed from https://ideas.repec.org/a/taf/apeclt/v29y2022i14p1300-1305.html
   My bibliography  Save this article

A comparison between mixed logit model and latent class logit model for multi-profile best-worst scaling: evidence from mobile payment choice dataset

Author

Listed:
  • Qinxin Guo
  • Junyi Shen

Abstract

This paper uses a multi-profile best-worst scaling dataset to compare the mixed logit model and the latent class logit model for mobile payment choice. Three non-nested tests are applied to show the comparison results. The results indicate that the mixed logit model is superior to the latent class logit model in all three tests.

Suggested Citation

  • Qinxin Guo & Junyi Shen, 2022. "A comparison between mixed logit model and latent class logit model for multi-profile best-worst scaling: evidence from mobile payment choice dataset," Applied Economics Letters, Taylor & Francis Journals, vol. 29(14), pages 1300-1305, August.
  • Handle: RePEc:taf:apeclt:v:29:y:2022:i:14:p:1300-1305
    DOI: 10.1080/13504851.2021.1927955
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/13504851.2021.1927955
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/13504851.2021.1927955?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chenyang Wang & Linxiu Wang & Tiantian Gu & Enyang Hao & Yujie Chen & Huanjie Zhang, 2024. "Evaluating Smart Community Development in China from the Perspective of Residents’ Sense of Safety: An Analysis Using Criteria Importance through Intercriteria Correlation and Fuzzy Comprehensive Eval," Land, MDPI, vol. 13(9), pages 1-21, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apeclt:v:29:y:2022:i:14:p:1300-1305. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAEL20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.