IDEAS home Printed from https://ideas.repec.org/a/taf/apeclt/v27y2020i17p1434-1437.html
   My bibliography  Save this article

Can machine learning on economic data better forecast the unemployment rate?

Author

Listed:
  • Aaron Kreiner
  • John Duca

Abstract

Using FRED data, a machine-learning model outperforms the Survey of Professional Forecasters and other models since 2001 in forecasting the unemployment rate.

Suggested Citation

  • Aaron Kreiner & John Duca, 2020. "Can machine learning on economic data better forecast the unemployment rate?," Applied Economics Letters, Taylor & Francis Journals, vol. 27(17), pages 1434-1437, October.
  • Handle: RePEc:taf:apeclt:v:27:y:2020:i:17:p:1434-1437
    DOI: 10.1080/13504851.2019.1688237
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/13504851.2019.1688237
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/13504851.2019.1688237?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wooi Chen Khoo & Kim Leng Yeah & Shun Yi Hong, 2022. "Modeling unemployment duration, determinants and insurance premium pricing of Malaysia: insights from an upper middle-income developing country," SN Business & Economics, Springer, vol. 2(8), pages 1-25, August.
    2. David Stoneman & John V. Duca, 2024. "Using deep (machine) learning to forecast US inflation in the COVID‐19 era," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(4), pages 894-902, July.
    3. Antonio Rodríguez Andrés & Voxi Heinrich S. Amavilah & Abraham Otero, 2021. "Evaluation of technology clubs by clustering: a cautionary note," Applied Economics, Taylor & Francis Journals, vol. 53(52), pages 5989-6001, November.
    4. Phi-Hung Nguyen & Jung-Fa Tsai & Ihsan Erdem Kayral & Ming-Hua Lin, 2021. "Unemployment Rates Forecasting with Grey-Based Models in the Post-COVID-19 Period: A Case Study from Vietnam," Sustainability, MDPI, vol. 13(14), pages 1-27, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apeclt:v:27:y:2020:i:17:p:1434-1437. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAEL20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.